login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189911
Row sums of the extended Catalan triangle A189231.
5
1, 2, 4, 9, 18, 40, 80, 175, 350, 756, 1512, 3234, 6468, 13728, 27456, 57915, 115830, 243100, 486200, 1016158, 2032316, 4232592, 8465184, 17577014, 35154028, 72804200, 145608400, 300874500, 601749000, 1240940160, 2481880320, 5109183315, 10218366630
OFFSET
0,2
LINKS
FORMULA
Let a = Gamma(n-floor(n/2)), b = Gamma(floor(n/2+3/2)), d = Gamma( floor(n/2+1))^2, c = Gamma(n+1). Then a(n) = c*(a*b+d)/(a*b*d).
a(n) = A162246(n,n) + A162246(n,n+1) for n > 0.
From Peter Luschny, Oct 24 2013 : (Start)
E.g.f.: (x+1)*(BesselI(0, 2*x)+BesselI(1, 2*x)).
O.g.f.: I*(2*x^2-1)/(2*sqrt(2*x+1)*x*(2*x-1)^(3/2))-1/(2*x).
Recurrence: a(0) = 1; a(n) = a(n-1)*2 if n is even else ([n/2]+2)*(2*[n/2]+1)/([n/2]+1)^2. ([.] the floor brackets.)
a(n) = A056040(n) + A212303(n) = n$*(1+[(n+1)/2]^((-1)^n)), where n$ is the swinging factorial.
a(2*n) = (n+1)*C(2*n, n) (A037965);
a(2*n+1) = (n+2)*C(2*n+1, n+1) (A097070). (End)
Sum_{n>=0} 1/a(n) = 4*Pi/sqrt(3) - Pi^2/3 - 2. - Amiram Eldar, Aug 20 2022
D-finite with recurrence: (n-2)*(n+1)^2*a(n) - (2*(n-2)^2+2*n-12)*a(n-1) - 4*(n+2)*(n-1)^2*a(n-2) = 0. - Georg Fischer, Nov 25 2022
MAPLE
A189911 := proc(n) local a, b, d; if n = 0 then 1 else
a := GAMMA(n-floor(n/2)); b := GAMMA(floor(n/2+3/2));
d := GAMMA(floor(n/2+1))^2; GAMMA(n+1)*(a*b+d)/(a*b*d) fi end: seq(A189911(n), n=0..32);
A189911 := proc(n) h:=irem(n, 2); g:=iquo(n, 2); (g+h+1)*binomial(2*g+h, g+h) end; # Peter Luschny, Oct 24 2013
MATHEMATICA
a[n_] := Module[{q, r}, {q, r} = QuotientRemainder[n, 2]; (q+r+1)*Pochhammer[q+1, q+r]/(q+r)!]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jan 09 2014 *)
PROG
(Sage)
def A189911():
r, n = 1, 1
while True:
yield r
h = n//2
r *= 2 if is_even(n) else (h+2)*(2*h+1)/(h+1)^2
n += 1
a = A189911(); [next(a) for i in range(16)] # Peter Luschny, Oct 24 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 01 2011
STATUS
approved