login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189913
Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!).
1
1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 1, 4, 6, 12, 2, 1, 5, 10, 30, 10, 10, 1, 6, 15, 60, 30, 60, 5, 1, 7, 21, 105, 70, 210, 35, 35, 1, 8, 28, 168, 140, 560, 140, 280, 14, 1, 9, 36, 252, 252, 1260, 420, 1260, 126, 126, 1, 10, 45, 360, 420, 2520, 1050, 4200, 630, 1260, 42
OFFSET
0,5
COMMENTS
The triangle may be regarded a generalization of the triangle A097610:
A097610(n,k) = binomial(n,k)*(2*k)$/(k+1);
T(n,k) = binomial(n,k)*(k)$/(floor(k/2)+1).
Here n$ denotes the swinging factorial A056040(n). As A097610 is a decomposition of the Motzkin numbers A001006, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.
T(n,n) = A057977(n) which can be seen as extended Catalan numbers.
FORMULA
From R. J. Mathar, Jun 07 2011: (Start)
T(n,1) = n.
T(n,2) = A000217(n-1).
T(n,3) = A027480(n-2).
T(n,4) = A034827(n). (End)
EXAMPLE
[0] 1
[1] 1, 1
[2] 1, 2, 1
[3] 1, 3, 3, 3
[4] 1, 4, 6, 12, 2
[5] 1, 5, 10, 30, 10, 10
[6] 1, 6, 15, 60, 30, 60, 5
[7] 1, 7, 21, 105, 70, 210, 35, 35
MAPLE
A189913 := (n, k) -> binomial(n, k)*(k!/iquo(k, 2)!^2)/(iquo(k, 2)+1):
seq(print(seq(A189913(n, k), k=0..n)), n=0..7);
MATHEMATICA
T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 13 2018 *)
PROG
(PARI) {T(n, k) = binomial(n, k)*k!/((floor(k/2))!*(floor((k+2)/2))!) };
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 13 2018
(Magma) /* As triangle */ [[Binomial(n, k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 13 2018
CROSSREFS
Row sums are A189912.
Sequence in context: A308028 A356077 A320902 * A240807 A355201 A334347
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, May 24 2011
STATUS
approved