login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189913 Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!). 1
1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 1, 4, 6, 12, 2, 1, 5, 10, 30, 10, 10, 1, 6, 15, 60, 30, 60, 5, 1, 7, 21, 105, 70, 210, 35, 35, 1, 8, 28, 168, 140, 560, 140, 280, 14, 1, 9, 36, 252, 252, 1260, 420, 1260, 126, 126, 1, 10, 45, 360, 420, 2520, 1050, 4200, 630, 1260, 42 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The triangle may be regarded a generalization of the triangle A097610:

A097610(n,k) = binomial(n,k)*(2*k)$/(k+1);

T(n,k) = binomial(n,k)*(k)$/(floor(k/2)+1).

Here n$ denotes the swinging factorial A056040(n). As A097610 is a decomposition of the Motzkin numbers A001006, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.

T(n,n) = A057977(n) which can be seen as extended Catalan numbers.

LINKS

G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened

Peter Luschny, The lost Catalan numbers.

FORMULA

From R. J. Mathar, Jun 07 2011: (Start)

T(n,1) = n.

T(n,2) = A000217(n-1).

T(n,3) = A027480(n-2).

T(n,4) = A034827(n). (End)

EXAMPLE

[0]  1

[1]  1, 1

[2]  1, 2,  1

[3]  1, 3,  3,   3

[4]  1, 4,  6,  12,  2

[5]  1, 5, 10,  30, 10,  10

[6]  1, 6, 15,  60, 30,  60,  5

[7]  1, 7, 21, 105, 70, 210, 35, 35

MAPLE

A189913 := (n, k) -> binomial(n, k)*(k!/iquo(k, 2)!^2)/(iquo(k, 2)+1):

seq(print(seq(A189913(n, k), k=0..n)), n=0..7);

MATHEMATICA

T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 13 2018 *)

PROG

(PARI) {T(n, k) = binomial(n, k)*k!/((floor(k/2))!*(floor((k+2)/2))!) };

for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 13 2018

(MAGMA) /* As triangle */ [[Binomial(n, k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 13 2018

CROSSREFS

Row sums are A189912.

Cf. A097610, A057977, A001006.

Sequence in context: A262180 A308028 A320902 * A240807 A334347 A283672

Adjacent sequences:  A189910 A189911 A189912 * A189914 A189915 A189916

KEYWORD

nonn,tabl,easy

AUTHOR

Peter Luschny, May 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 20:08 EDT 2021. Contains 344963 sequences. (Running on oeis4.)