OFFSET
0,5
COMMENTS
The triangle may be regarded a generalization of the triangle A097610:
A097610(n,k) = binomial(n,k)*(2*k)$/(k+1);
T(n,k) = binomial(n,k)*(k)$/(floor(k/2)+1).
Here n$ denotes the swinging factorial A056040(n). As A097610 is a decomposition of the Motzkin numbers A001006, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.
T(n,n) = A057977(n) which can be seen as extended Catalan numbers.
LINKS
G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Peter Luschny, The lost Catalan numbers.
FORMULA
From R. J. Mathar, Jun 07 2011: (Start)
T(n,1) = n.
T(n,2) = A000217(n-1).
T(n,3) = A027480(n-2).
T(n,4) = A034827(n). (End)
EXAMPLE
[0] 1
[1] 1, 1
[2] 1, 2, 1
[3] 1, 3, 3, 3
[4] 1, 4, 6, 12, 2
[5] 1, 5, 10, 30, 10, 10
[6] 1, 6, 15, 60, 30, 60, 5
[7] 1, 7, 21, 105, 70, 210, 35, 35
MAPLE
MATHEMATICA
T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 13 2018 *)
PROG
(PARI) {T(n, k) = binomial(n, k)*k!/((floor(k/2))!*(floor((k+2)/2))!) };
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 13 2018
(Magma) /* As triangle */ [[Binomial(n, k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 13 2018
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, May 24 2011
STATUS
approved