login
A189914
a(n) is 2^phi(n) times the least common multiple of the proper divisors of n.
1
1, 2, 2, 4, 8, 16, 24, 64, 64, 192, 160, 1024, 192, 4096, 896, 3840, 2048, 65536, 1152, 262144, 5120, 86016, 22528, 4194304, 6144, 5242880, 106496, 2359296, 114688, 268435456, 7680, 1073741824, 1048576, 34603008, 2228224, 587202560, 147456, 68719476736, 9961472
OFFSET
0,2
COMMENTS
The sequence relates arithmetic properties of roots of unity in the complex plane with number theoretic properties of integers. This connection often appears as intriguing identities showing products of specific values of the sine function or the gamma function reducing to simple values (see for instance the first formula below).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..3322
Peter Luschny and Stefan Wehmeier, The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences, arXiv:0909.1838 [math.CA], Sep 2009.
Albert Nijenhuis, Short Gamma Products with Simple Values, The American Mathematical Monthly, Vol. 117, No. 8, Oct 2010, pp. 733-737.
J. Sándor and L. Tóth, A remark on the gamma function, Elemente der Mathematik, 44 (1989), pp. 73-76, Birkhäuser.
FORMULA
Let R(n) = {k | gcd(n,k) = 1, k = 1..floor(n/2)} and b(n) = product_{R(n)} sin(Pi*k/n) then a(n) = n / b(n)^2 for n > 1.
a(n) = A066781(n)*A048671(n).
MAPLE
A189914 := n -> 2^numtheory[phi](n)*ilcm(op(numtheory[divisors](n) minus {1, n})): seq(A189914(n), n=0..35);
MATHEMATICA
a[n_] := 2^EulerPhi[n] * LCM @@ Most[Divisors[n]]; a[0] = 1; a[1] = 2; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Jan 22 2014 *)
PROG
(PARI) a(n)=if(n, my(p=n); if(isprime(n)||(ispower(n, , &p)&&isprime(p)), n/p, n)<<eulerphi(n), 1) \\ Charles R Greathouse IV, Jun 24 2011
CROSSREFS
Sequence in context: A005864 A112433 A171648 * A286496 A318187 A217931
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 22 2011
STATUS
approved