login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171648
a(1) = 1, a(n) = 2*a(n-1) if n is even; a(n) = a(n-1)*Fibonacci((n+1)/2)/Fibonacci((n-1)/2) if n is odd.
1
1, 2, 2, 4, 8, 16, 24, 48, 80, 160, 256, 512, 832, 1664, 2688, 5376, 8704, 17408, 28160, 56320, 91136, 182272, 294912, 589824, 954368, 1908736, 3088384, 6176768, 9994240, 19988480, 32342016, 64684032, 104660992, 209321984, 338690048, 677380096, 1096024064
OFFSET
1,2
COMMENTS
a(n)/a(n-1) apparently tends to phi = A001622 if n=odd; e.g. a(21)/a(20) = 91136/56320 = 1.61818...
a(n)/a(n-2) apparently tends to 1+sqrt(5) = 3.236...= A134945; where a(21)/a(19) = 91136/28160 = 3.23636...
a(1)=1, a(2)=2, a(3)=2, for n>3 a(n)=2*a(n-1) if n is even and a(n)=2*(a(n-1)-a(n-2)+a(n-3)) if n is odd. - Vincenzo Librandi, Dec 06 2010
FORMULA
a(1) = 1, a(n) = 2*a(n-1) if n is even; a(n) = a(n-1)*A000045((n+1)/2)/A000045((n-1)/2) if n is odd.
From Colin Barker, Aug 02 2016: (Start)
a(n) = 2*a(n-2) + 4*a(n-4) for n>4.
G.f.: x*(1+2*x) / (1-2*x^2-4*x^4).
(End)
EXAMPLE
a(8) = 48 = 2*a(7) = 2*24. a(9) = 80 = (5/3)*48 since Fibonacci(5) = 5 and Fibonacci(4) = 3.
PROG
(PARI) Vec(x*(1+2*x)/(1-2*x^2-4*x^4) + O(x^50)) \\ Colin Barker, Aug 02 2016
CROSSREFS
Cf. A063727 (bisection), A103435 (bisection).
Sequence in context: A289670 A005864 A112433 * A189914 A286496 A318187
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 13 2009
EXTENSIONS
Defined "F", removed abundant parentheses, added punctuation to examples, added a factor to the definition, corrected a(13) and added more terms - R. J. Mathar, Dec 15 2009
STATUS
approved