login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171650
Triangle T, read by rows : T(n,k) = A007318(n,k)*A026641(n-k).
1
1, 1, 1, 4, 2, 1, 13, 12, 3, 1, 46, 52, 24, 4, 1, 166, 230, 130, 40, 5, 1, 610, 996, 690, 260, 60, 6, 1, 2269, 4270, 3486, 1610, 455, 84, 7, 1, 8518, 18152, 17080, 9296, 3220, 728, 112, 8, 1, 32206, 76662, 81684, 51240, 20916, 5796, 1092, 144, 9, 1
OFFSET
0,4
FORMULA
Sum_{k, 0<=k<=n} T(n,k)*x^k = A127361(n), A127328(n), A026641(n), A126568(n), A133158(n) for x = -2, -1, 0, 1, 2 respectively.
T(n, k) = (-1)^(n-k)*binomial(n, k)*Sum_{j=0..n-k} (-1)^j*Binomial(n-k+j, j). - G. C. Greubel, Apr 29 2019
EXAMPLE
Triangle begins as
1;
1, 1;
4, 2, 1;
13, 12, 3, 1;
46, 52, 24, 4, 1;
166, 230, 130, 40, 5, 1; ...
MATHEMATICA
T[n_, k_]:= (-1)^(n-k)*Binomial[n, k]*Sum[(-1)^j*Binomial[n-k+j, j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 29 2019 *)
PROG
(PARI) {T(n, k) = (-1)^(n-k)*binomial(n, k)*sum(j=0, n-k, (-1)^j*binomial(n-k+j, j))}; \\ G. C. Greubel, Apr 29 2019
(Magma) [[(-1)^(n-k)*Binomial(n, k)*(&+[(-1)^j*Binomial(n-k+j, j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 29 2019
(Sage) [[(-1)^(n-k)*binomial(n, k)*sum((-1)^j*binomial(n-k+j, j) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 29 2019
CROSSREFS
Sequence in context: A302235 A242861 A109244 * A225476 A143777 A365566
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 13 2009
STATUS
approved