login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127328
Inverse binomial transform of A026641; binomial transform of A127361.
2
1, 0, 3, 3, 15, 30, 99, 252, 747, 2064, 5973, 16995, 49089, 141414, 409755, 1188243, 3455811, 10064952, 29368377, 85809681, 251067645, 735446106, 2156695533, 6330729438, 18600079221, 54693760680, 160951905819, 473984678037, 1396755865527, 4118553190254
OFFSET
0,3
COMMENTS
Hankel transform is 3^n.
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(n+j)*binomial(k+j, j)*binomial(n, k). - G. C. Greubel, Apr 30 2019
a(n) ~ 3^n / sqrt(3*Pi*n). - Vaclav Kotesovec, Jul 20 2019
MATHEMATICA
a[n_]:= Sum[(-1)^n*Sum[(-1)^j*Binomial[k+j, j], {j, 0, k}]*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Apr 30 2019 *)
PROG
(PARI) {a(n) = sum(k=0, n, sum(j=0, k, (-1)^(n+j)*binomial(k+j, j)* binomial(n, k)))}; \\ G. C. Greubel, Apr 30 2019
(Magma) [ (&+[ (&+[(-1)^(n+j)*Binomial(k+j, j)*Binomial(n, k): j in [0..k]]): k in [0..n]]) : n in [0..30]]; // G. C. Greubel, Apr 30 2019
(Sage) [sum(sum((-1)^(n+j)*binomial(k+j, j)*binomial(n, k) for j in (0..k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Apr 30 2019
(GAP) List([0..30], n-> Sum([0..n], k-> Sum([0..k], j-> (-1)^(n+j)* Binomial(k+j, j)*Binomial(n, k)))) # G. C. Greubel, Apr 30 2019
CROSSREFS
Sequence in context: A269956 A153512 A369358 * A002891 A089875 A035617
KEYWORD
nonn
AUTHOR
Philippe Deléham, Mar 29 2007
EXTENSIONS
Terms a(10) onward added by G. C. Greubel, Apr 30 2019
STATUS
approved