login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127361
a(n) = Sum_{k=0..n} binomial(n, floor(k/2))*(-2)^(n-k).
8
1, -1, 4, -7, 22, -46, 130, -295, 790, -1870, 4864, -11782, 30148, -73984, 187534, -463687, 1168870, -2902870, 7293640, -18161170, 45541492, -113576596, 284470564, -710118262, 1777323772, -4439253196, 11105933440, -27749232700, 69403169200
OFFSET
0,3
COMMENTS
Hankel transform is 3^n. In general, for r >= 0, the sequence given by Sum_{k=0..n} binomial(n, floor(k/2))*(-r)^(n-k) has Hankel transform (r+1)^n. The sequence is the image of the sequence with g.f. (1+x)/(1+2*x) under the Chebyshev mapping g(x) -> (1/sqrt(1-4*x^2)) * g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108.
Second binomial transform is A026641. - Philippe Deléham, Mar 14 2007
Signed version of A100098. - Philippe Deléham, Nov 25 2007
LINKS
FORMULA
G.f.: (1/sqrt(1-4*x^2))(1+x*c(x^2))/(1+2*x*c(x^2)), with c(x) = (1 - sqrt(1-4*x))/(2*x).
a(n) = Sum_{k=0..n} A061554(n,k)*(-2)^k. - Philippe Deléham, Nov 25 2007
a(n) = Sum_{k=0..n} A061554(n,k)*(-2)^k. - Philippe Deléham, Dec 04 2009
Conjecture: 2*n*a(n) + (5*n-4)*a(n-1) - 2*(4*n-3)*a(n-2) - 20*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012
a(n) ~ (-1)^n * 5^n / 2^(n+1). - Vaclav Kotesovec, Feb 13 2014
MAPLE
a:=n->add(binomial(n, floor(k/2))*(-2)^(n-k), k=0..n): seq(a(n), n=0..30); # Muniru A Asiru, Feb 18 2019
MATHEMATICA
CoefficientList[Series[(1/Sqrt[1-4*x^2])*(1+x*(1-Sqrt[1-4*x^2]) / (2*x^2)) /(1+2*x*(1-Sqrt[1-4*x^2])/(2*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
PROG
(PARI) my(x='x+O('x^30)); Vec( (1+2*x-sqrt(1-4*x^2))/(2*sqrt(1-4*x^2)*(1+x-sqrt(1-4*x^2))) ) \\ G. C. Greubel, Feb 17 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1+2*x-Sqrt(1-4*x^2))/(2*Sqrt(1-4*x^2)*(1+x-Sqrt(1-4*x^2))) )); // G. C. Greubel, Feb 17 2019
(Sage) ((1+2*x-sqrt(1-4*x^2))/(2*sqrt(1-4*x^2)*(1+x-sqrt(1-4*x^2))) ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jan 11 2007
EXTENSIONS
More terms from Vincenzo Librandi, Feb 15 2014
STATUS
approved