login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162559
a(n) = ((4+sqrt(3))*(1+sqrt(3))^n + (4-sqrt(3))*(1-sqrt(3))^n)/2.
2
4, 7, 22, 58, 160, 436, 1192, 3256, 8896, 24304, 66400, 181408, 495616, 1354048, 3699328, 10106752, 27612160, 75437824, 206099968, 563075584, 1538351104, 4202853376, 11482408960, 31370524672, 85705867264, 234152783872, 639717302272, 1747740172288, 4774914949120
OFFSET
0,1
COMMENTS
Binomial transform of A162766. Inverse binomial transform of A077236.
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0) = 4, a(1) = 7.
G.f.: (4-x)/(1-2*x-2*x^2).
MAPLE
seq((1/2)*simplify((4+sqrt(3))*(1+sqrt(3))^n+(4-sqrt(3))*(1-sqrt(3))^n), n = 0 .. 27); # Emeric Deutsch, Jul 16 2009
MATHEMATICA
LinearRecurrence[{2, 2}, {4, 7}, 30] (* Harvey P. Dale, Sep 21 2018 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((4+r)*(1+r)^n+(4-r)*(1-r)^n)/2: n in [0..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 13 2009
CROSSREFS
Sequence in context: A127361 A376489 A128533 * A126094 A073114 A083830
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009
EXTENSIONS
Edited by Klaus Brockhaus, Paolo P. Lava and Emeric Deutsch, Jul 13 2009
Two different extensions were received. This version was rechecked by N. J. A. Sloane, Jul 19 2009
STATUS
approved