login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162562
a(n) = ((5+sqrt(3))*(1+sqrt(3))^n + (5-sqrt(3))*(1-sqrt(3))^n)/2.
3
5, 8, 26, 68, 188, 512, 1400, 3824, 10448, 28544, 77984, 213056, 582080, 1590272, 4344704, 11869952, 32429312, 88598528, 242055680, 661308416, 1806728192, 4936073216, 13485602816, 36843352064, 100657909760, 275002523648
OFFSET
0,1
COMMENTS
Binomial transform of A162813. Inverse binomial transform of A162563.
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0) = 5, a(1) = 8.
G.f.: (5-2*x)/(1-2*x-2*x^2).
MATHEMATICA
LinearRecurrence[{2, 2}, {5, 8}, 30] (* Harvey P. Dale, Aug 17 2013 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((5+r)*(1+r)^n+(5-r)*(1-r)^n)/2: n in [0..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 14 2009
CROSSREFS
Sequence in context: A101584 A112577 A192920 * A182543 A026539 A126700
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 14 2009
STATUS
approved