login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((4+sqrt(3))*(1+sqrt(3))^n + (4-sqrt(3))*(1-sqrt(3))^n)/2.
2

%I #13 Sep 08 2022 08:45:46

%S 4,7,22,58,160,436,1192,3256,8896,24304,66400,181408,495616,1354048,

%T 3699328,10106752,27612160,75437824,206099968,563075584,1538351104,

%U 4202853376,11482408960,31370524672,85705867264,234152783872,639717302272,1747740172288,4774914949120

%N a(n) = ((4+sqrt(3))*(1+sqrt(3))^n + (4-sqrt(3))*(1-sqrt(3))^n)/2.

%C Binomial transform of A162766. Inverse binomial transform of A077236.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,2).

%F a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0) = 4, a(1) = 7.

%F G.f.: (4-x)/(1-2*x-2*x^2).

%p seq((1/2)*simplify((4+sqrt(3))*(1+sqrt(3))^n+(4-sqrt(3))*(1-sqrt(3))^n), n = 0 .. 27); # _Emeric Deutsch_, Jul 16 2009

%t LinearRecurrence[{2,2},{4,7},30] (* _Harvey P. Dale_, Sep 21 2018 *)

%o (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((4+r)*(1+r)^n+(4-r)*(1-r)^n)/2: n in [0..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Jul 13 2009

%Y Cf. A162766, A077236.

%K nonn

%O 0,1

%A Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009

%E Edited by _Klaus Brockhaus_, _Paolo P. Lava_ and Emeric Deutsch, Jul 13 2009

%E Two different extensions were received. This version was rechecked by _N. J. A. Sloane_, Jul 19 2009