login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073114
Number of permutations p from (1,2,3,...,n) to (1,2,3,...,n) such that 1*p(1) + 2*p(2) + 3*p(3) + ... + n*p(n) is prime.
0
0, 1, 4, 7, 22, 160, 938, 7261, 67492, 572848, 6774544, 71929775, 985400749, 12521202682, 188765264950, 2889019817104, 47703971114988, 877662524710517
OFFSET
1,3
EXAMPLE
For n=3: permutations (1,3,2) (3,1,2) (2,3,1) (2,1,3) meet the requirement since 1*1 + 2*3 + 3*2 = 13, 1*3 + 2*1 + 3*2 = 11, 1*2 + 2*3 + 3*1 = 11 and 1*2 + 2*1 + 3*3 = 13, hence a(3)=4.
MAPLE
n := 9: with(combinat): P := permute(n): ct := 0: for i to factorial(n) do if isprime(add(j*P[i][j], j = 1 .. n)) = true then ct := ct+1 else end if end do: ct; # yields only the term a(n) corresponding to the n specified at the start of the program # Emeric Deutsch, Jul 22 2009
PROG
(PARI) a(n)=sum(k=1, n!, if(isprime(sum(i=1, n, i*component(numtoperm(n, k), i)))-1, 0, 1))
(PARI) a(n)=local(V=vector(n, x, x)~); sum(k=1, n!, isprime(numtoperm(n, k)*V)) \\ Hagen von Eitzen, Jun 26 2009
CROSSREFS
Sequence in context: A128533 A162559 A126094 * A083830 A363650 A086968
KEYWORD
more,nonn
AUTHOR
Benoit Cloitre, Aug 19 2002
EXTENSIONS
a(10)-a(11) from Hagen von Eitzen, Jun 26 2009
a(12)-a(14) from Donovan Johnson, Sep 24 2010
a(15)-a(18) from Robert Gerbicz, Nov 21 2010
STATUS
approved