login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127363
a(n) = Sum_{k=0..n} C(n,floor(k/2))*(-4)^(n-k).
4
1, -3, 14, -57, 246, -1038, 4424, -18777, 79846, -339258, 1442004, -6128202, 26045436, -110691948, 470442924, -1999378137, 8497365126, -36113785698, 153483619604, -652305322542, 2772297736276, -11782265148228, 50074627320864, -212817165231882, 904472953925596
OFFSET
0,2
COMMENTS
Hankel transform is 5^n. In general, for r>=0, the sequence given by Sum_{k=0..n} C(n,floor(k/2))*(-r)^(n-k) has Hankel transform (r+1)^n. The sequence is the image of the sequence with g.f. (1+x)/(1+4x) under the Chebyshev mapping g(x)->(1/sqrt(1-4x^2))g(xc(x^2)), where c(x) is the g.f. of the Catalan numbers A000108.
LINKS
FORMULA
G.f.: (1/sqrt(1-4x^2))(1+x*c(x^2))/(1+4*x*c(x^2)).
Conjecture: 4*n*a(n) +(17*n-8)*a(n-1) +2*(-8*n-1)*a(n-2) +68*(-n+2)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ (-1)^n * 3 * 17^n / 4^(n+1). - Vaclav Kotesovec, Feb 12 2014
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-4*x^2] * (1+x*(1-Sqrt[1-4*x^2]) / (2*x^2)) / (1+4*x*(1-Sqrt[1-4*x^2])/(2*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
CROSSREFS
Cf. A000108.
Sequence in context: A037093 A135926 A015523 * A133444 A126875 A110526
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jan 11 2007
EXTENSIONS
More terms from Vincenzo Librandi, Feb 13 2014
STATUS
approved