login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T, read by rows : T(n,k) = A007318(n,k)*A026641(n-k).
1

%I #7 Sep 08 2022 08:45:50

%S 1,1,1,4,2,1,13,12,3,1,46,52,24,4,1,166,230,130,40,5,1,610,996,690,

%T 260,60,6,1,2269,4270,3486,1610,455,84,7,1,8518,18152,17080,9296,3220,

%U 728,112,8,1,32206,76662,81684,51240,20916,5796,1092,144,9,1

%N Triangle T, read by rows : T(n,k) = A007318(n,k)*A026641(n-k).

%H G. C. Greubel, <a href="/A171650/b171650.txt">Rows n = 0..100 of triangle, flattened</a>

%F Sum_{k, 0<=k<=n} T(n,k)*x^k = A127361(n), A127328(n), A026641(n), A126568(n), A133158(n) for x = -2, -1, 0, 1, 2 respectively.

%F T(n, k) = (-1)^(n-k)*binomial(n, k)*Sum_{j=0..n-k} (-1)^j*Binomial(n-k+j, j). - _G. C. Greubel_, Apr 29 2019

%e Triangle begins as

%e 1;

%e 1, 1;

%e 4, 2, 1;

%e 13, 12, 3, 1;

%e 46, 52, 24, 4, 1;

%e 166, 230, 130, 40, 5, 1; ...

%t T[n_, k_]:= (-1)^(n-k)*Binomial[n, k]*Sum[(-1)^j*Binomial[n-k+j, j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Apr 29 2019 *)

%o (PARI) {T(n,k) = (-1)^(n-k)*binomial(n,k)*sum(j=0,n-k,(-1)^j*binomial(n-k+j,j))}; \\ _G. C. Greubel_, Apr 29 2019

%o (Magma) [[(-1)^(n-k)*Binomial(n,k)*(&+[(-1)^j*Binomial(n-k+j,j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Apr 29 2019

%o (Sage) [[(-1)^(n-k)*binomial(n,k)*sum((-1)^j*binomial(n-k+j,j) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Apr 29 2019

%K nonn,tabl

%O 0,4

%A _Philippe Deléham_, Dec 13 2009