login
A133158
Binomial transform of A126568, second binomial transform of A026641.
3
1, 3, 12, 57, 294, 1578, 8658, 48177, 270774, 1533450, 8736432, 50016090, 287497380, 1658174352, 9591422286, 55618701057, 323225066790, 1882009941570, 10976834700792, 64119701075886, 375057555388884, 2196539772794172, 12878508015774468
OFFSET
0,2
COMMENTS
The Hankel transform of this sequence is 3^n (see A000244).
LINKS
Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
FORMULA
Conjecture: 2*n*a(n) + (-19*n+12)*a(n-1) + 6*(8*n-11)*a(n-2) + 36*(-n+2)*a(n-3) = 0. - R. J. Mathar, Jun 30 2013
a(n) ~ 2^(n + 1/2) * 3^(n - 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 02 2023
MATHEMATICA
CoefficientList[Series[(1 + 3*Sqrt[-1 + 2*x] / Sqrt[-1 + 6*x])/(4 - 6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 02 2023 *)
CROSSREFS
Row sums of triangle in A124575.
Sequence in context: A263667 A101106 A165310 * A328295 A194089 A178807
KEYWORD
nonn
AUTHOR
Philippe Deléham, Oct 08 2007
STATUS
approved