login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133159
A symmetry-breaking on the graph substitution for hexagonal close packing (A131213) from two hexagons to a pentagon and heptagon while keeping the number of vertices constant: Characteristic polynomial is: 8 - 36 x - 332 x^2 + 314 x^3 + 3833 x^4 + 5492 x^5 + 584 x^6 - 3196 x^7 - 1315 x^8 + 596 x^9 + 354 x^10 - 36 x^11 - 34 x^12 + x^14.
1
1, 3, 6, 8, 9, 1, 4, 6, 12, 13, 1, 2, 3, 4, 5, 1, 8, 13, 14, 1, 3, 6, 8, 9, 3, 5, 6, 11, 12, 2, 3, 8, 10, 14, 3, 9, 11, 14, 2, 5, 6, 7, 1, 3, 6, 8, 9, 2, 4, 9, 10, 3, 5, 6, 11, 12, 1, 4, 6, 12, 13, 1, 3, 6, 8, 9, 1, 8, 13, 14, 2, 3, 8, 10, 14, 6, 7, 8, 9, 10, 11, 12, 13, 1, 3, 6, 8, 9, 2, 4, 9, 10, 2, 7
OFFSET
1,2
COMMENTS
The idea here is a displaced packing of spheres that is like the 7 tone (naturals) to 5 tone (flats) scale of 12 tone music. In geometrical terms it would be a non-Euclidean-type asymmetrical displacement of a hexagonal close packed crystal unit cell.
FORMULA
1->{2, 5, 6, 7}; 2->{1, 3, 6, 8, 9}; 3->{2, 4, 9, 10}; 4->{3, 5, 6, 11, 12}; 5->{1, 4, 6, 12, 13}; 6->{1, 2, 3, 4, 5}; 7->{1, 8, 13, 14}; 8->{2,7, 9, 14}; 9->{2, 3, 8, 10, 14}; 10->{3, 9, 11, 14}; 11->{4, 10, 12, 14}; 12->{4, 5, 11, 13, 14}; 13->{5, 7, 11, 14}; 14->{6,7, 8, 9, 10, 11, 12, 13}
MATHEMATICA
Clear[s] s[1] = {2, 5, 6, 7}; s[2] = {1, 3, 6, 8, 9}; s[3] = {2, 4, 9, 10}; s[4] = {3, 5, 6, 11, 12}; s[5] = {1, 4, 6, 12, 13}; s[6] = {1, 2, 3, 4, 5}; s[7] = {1, 8, 13, 14}; s[8] = {2, 7, 9, 14}; s[9] = {2, 3, 8, 10, 14}; s[10] = {3, 9, 11, 14}; s[11] = { 4, 10, 12, 14}; s[12] = {4, 5, 11, 13, 14}; s[13] = {5, 7, 11, 14}; s[14] = {6, 7, 8, 9, 10, 11, 12, 13}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; aa = p[4]
CROSSREFS
Cf. A131213.
Sequence in context: A016663 A023993 A350618 * A188544 A163463 A137386
KEYWORD
nonn,uned,obsc
AUTHOR
Roger L. Bagula, Oct 08 2007
EXTENSIONS
Definition is not clear. - N. J. A. Sloane, May 06 2008
STATUS
approved