The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133159 A symmetry-breaking on the graph substitution for hexagonal close packing (A131213) from two hexagons to a pentagon and heptagon while keeping the number of vertices constant: Characteristic polynomial is: 8 - 36 x - 332 x^2 + 314 x^3 + 3833 x^4 + 5492 x^5 + 584 x^6 - 3196 x^7 - 1315 x^8 + 596 x^9 + 354 x^10 - 36 x^11 - 34 x^12 + x^14. 1
 1, 3, 6, 8, 9, 1, 4, 6, 12, 13, 1, 2, 3, 4, 5, 1, 8, 13, 14, 1, 3, 6, 8, 9, 3, 5, 6, 11, 12, 2, 3, 8, 10, 14, 3, 9, 11, 14, 2, 5, 6, 7, 1, 3, 6, 8, 9, 2, 4, 9, 10, 3, 5, 6, 11, 12, 1, 4, 6, 12, 13, 1, 3, 6, 8, 9, 1, 8, 13, 14, 2, 3, 8, 10, 14, 6, 7, 8, 9, 10, 11, 12, 13, 1, 3, 6, 8, 9, 2, 4, 9, 10, 2, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The idea here is a displaced packing of spheres that is like the 7 tone (naturals) to 5 tone (flats) scale of 12 tone music. In geometrical terms it would be a non-Euclidean-type asymmetrical displacement of a hexagonal close packed crystal unit cell. LINKS Table of n, a(n) for n=1..94. FORMULA 1->{2, 5, 6, 7}; 2->{1, 3, 6, 8, 9}; 3->{2, 4, 9, 10}; 4->{3, 5, 6, 11, 12}; 5->{1, 4, 6, 12, 13}; 6->{1, 2, 3, 4, 5}; 7->{1, 8, 13, 14}; 8->{2,7, 9, 14}; 9->{2, 3, 8, 10, 14}; 10->{3, 9, 11, 14}; 11->{4, 10, 12, 14}; 12->{4, 5, 11, 13, 14}; 13->{5, 7, 11, 14}; 14->{6,7, 8, 9, 10, 11, 12, 13} MATHEMATICA Clear[s] s[1] = {2, 5, 6, 7}; s[2] = {1, 3, 6, 8, 9}; s[3] = {2, 4, 9, 10}; s[4] = {3, 5, 6, 11, 12}; s[5] = {1, 4, 6, 12, 13}; s[6] = {1, 2, 3, 4, 5}; s[7] = {1, 8, 13, 14}; s[8] = {2, 7, 9, 14}; s[9] = {2, 3, 8, 10, 14}; s[10] = {3, 9, 11, 14}; s[11] = { 4, 10, 12, 14}; s[12] = {4, 5, 11, 13, 14}; s[13] = {5, 7, 11, 14}; s[14] = {6, 7, 8, 9, 10, 11, 12, 13}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; aa = p[4] CROSSREFS Cf. A131213. Sequence in context: A016663 A023993 A350618 * A188544 A163463 A137386 Adjacent sequences: A133156 A133157 A133158 * A133160 A133161 A133162 KEYWORD nonn,uned,obsc AUTHOR Roger L. Bagula, Oct 08 2007 EXTENSIONS Definition is not clear. - N. J. A. Sloane, May 06 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 04:57 EDT 2023. Contains 363157 sequences. (Running on oeis4.)