login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A symmetry-breaking on the graph substitution for hexagonal close packing (A131213) from two hexagons to a pentagon and heptagon while keeping the number of vertices constant: Characteristic polynomial is: 8 - 36 x - 332 x^2 + 314 x^3 + 3833 x^4 + 5492 x^5 + 584 x^6 - 3196 x^7 - 1315 x^8 + 596 x^9 + 354 x^10 - 36 x^11 - 34 x^12 + x^14.
1

%I #6 Mar 30 2012 17:34:22

%S 1,3,6,8,9,1,4,6,12,13,1,2,3,4,5,1,8,13,14,1,3,6,8,9,3,5,6,11,12,2,3,

%T 8,10,14,3,9,11,14,2,5,6,7,1,3,6,8,9,2,4,9,10,3,5,6,11,12,1,4,6,12,13,

%U 1,3,6,8,9,1,8,13,14,2,3,8,10,14,6,7,8,9,10,11,12,13,1,3,6,8,9,2,4,9,10,2,7

%N A symmetry-breaking on the graph substitution for hexagonal close packing (A131213) from two hexagons to a pentagon and heptagon while keeping the number of vertices constant: Characteristic polynomial is: 8 - 36 x - 332 x^2 + 314 x^3 + 3833 x^4 + 5492 x^5 + 584 x^6 - 3196 x^7 - 1315 x^8 + 596 x^9 + 354 x^10 - 36 x^11 - 34 x^12 + x^14.

%C The idea here is a displaced packing of spheres that is like the 7 tone (naturals) to 5 tone (flats) scale of 12 tone music. In geometrical terms it would be a non-Euclidean-type asymmetrical displacement of a hexagonal close packed crystal unit cell.

%F 1->{2, 5, 6, 7}; 2->{1, 3, 6, 8, 9}; 3->{2, 4, 9, 10}; 4->{3, 5, 6, 11, 12}; 5->{1, 4, 6, 12, 13}; 6->{1, 2, 3, 4, 5}; 7->{1, 8, 13, 14}; 8->{2,7, 9, 14}; 9->{2, 3, 8, 10, 14}; 10->{3, 9, 11, 14}; 11->{4, 10, 12, 14}; 12->{4, 5, 11, 13, 14}; 13->{5, 7, 11, 14}; 14->{6,7, 8, 9, 10, 11, 12, 13}

%t Clear[s] s[1] = {2, 5, 6, 7}; s[2] = {1, 3, 6, 8, 9}; s[3] = {2, 4, 9, 10}; s[4] = {3, 5, 6, 11, 12}; s[5] = {1, 4, 6, 12, 13}; s[6] = {1, 2, 3, 4, 5}; s[7] = {1, 8, 13, 14}; s[8] = {2, 7, 9, 14}; s[9] = {2, 3, 8, 10, 14}; s[10] = {3, 9, 11, 14}; s[11] = { 4, 10, 12, 14}; s[12] = {4, 5, 11, 13, 14}; s[13] = {5, 7, 11, 14}; s[14] = {6,7, 8, 9, 10, 11, 12, 13}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; aa = p[4]

%Y Cf. A131213.

%K nonn,uned,obsc

%O 1,2

%A _Roger L. Bagula_, Oct 08 2007

%E Definition is not clear. - _N. J. A. Sloane_, May 06 2008