login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171651
Triangle T, read by rows : T(n,k) = A007318(n,k)*A005773(n+1-k).
4
1, 2, 1, 5, 4, 1, 13, 15, 6, 1, 35, 52, 30, 8, 1, 96, 175, 130, 50, 10, 1, 267, 576, 525, 260, 75, 12, 1, 750, 1869, 2016, 1225, 455, 105, 14, 1, 2123, 6000, 7476, 5376, 2450, 728, 140, 16, 1, 6046, 19107, 27000, 22428, 12096, 4410, 1092, 180, 18, 1
OFFSET
0,2
LINKS
FORMULA
Sum_{k, 0<=k<=n} T(n,k)*x^k = A168491(n), A099323(n), A001405(n), A005773(n+1), A001700(n), A026378(n+1), A005573(n), A122898(n) for x = -3, -2, -1, 0, 1, 2, 3, 4 respectively.
E.g.f. of column k: exp(x)*(BesselI(0,2*x)+BesselI(1,2*x))*x^k / k!. - Mélika Tebni, Dec 16 2023
EXAMPLE
Triangle begins:
1;
2, 1;
5, 4, 1;
13, 15, 6, 1;
35, 52, 30, 8, 1;
...
MAPLE
b:= proc(u, d, t) option remember; `if`(u=0 and d=0, 1/2,
expand(`if`(u=0, 0, b(u-1, d, 2)*`if`(t=3, x, 1))
+`if`(d=0, 0, b(u, d-1, `if`(t=2, 3, 1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n+1$2, 1)):
seq(T(n), n=0..12); # Alois P. Heinz, Apr 29 2015
# second program:
A171651:= (n, k)-> binomial(n, k)*add((-1)^(n-k-j)*binomial(n-k, j)*binomial(2*j+1, j+1), j=0..n-k): seq(print(seq(A171651(n, k), k=0..n)), n=0..9); # Mélika Tebni, Dec 16 2023
MATHEMATICA
b[u_, d_, t_] := b[u, d, t] = If[u == 0 && d == 0, 1/2, Expand[If[u == 0, 0, b[u-1, d, 2]*If[t == 3, x, 1]] + If[d == 0, 0, b[u, d-1, If[t == 2, 3, 1]]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n+1, n+1, 1] ];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 21 2016, after Alois P. Heinz *)
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 14 2009
EXTENSIONS
Corrected by Philippe Deléham, Dec 18 2009
STATUS
approved