login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171488
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A005773(n+1)= 1,2,5,13,35,96,267,...
3
1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 35, 46, 27, 8, 1, 96, 147, 107, 44, 10, 1, 267, 462, 396, 204, 65, 12, 1, 750, 1437, 1404, 858, 345, 90, 14, 1, 2123, 4438, 4835, 3388, 1625, 538, 119, 16, 1, 6046, 13637, 16305, 12802, 7072, 2805, 791, 152, 18, 1
OFFSET
0,2
COMMENTS
Equal to A064189*B = B*A054336 = B^(-1)*A035324, B = A007318.
FORMULA
Sum_{k, 0<=k<=n} T(n,k)*x^k = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -2, -1, 0, 1 respectively.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012
T(n,k) = (k+1)*Sum_{j=0..n-k} C(2*j+k,j)*(-1)^j*3^(n-j-k)*C(n+1,j+k+1)/(n+1). - Vladimir Kruchinin Sep 30 2020
EXAMPLE
Triangle T(n,k) (0<=k<=n) begins:
1;
2, 1;
5, 4, 1;
13, 14, 6, 1;
35, 46, 27, 8, 1;
96, 147, 107, 44, 10, 1;
...
PROG
(Maxima)
T(n, k)=((k+1)*sum(binomial(2*j+k, j)*(-1)^j*3^(n-j-k)*binomial(n+1, j+k+1), j, 0, n-k))/(n+1); /* Vladimir Kruchinin Sep 30 2020 */
CROSSREFS
Sequence in context: A318942 A188137 A201165 * A171651 A348451 A104710
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 10 2009
STATUS
approved