login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A005773(n+1)= 1,2,5,13,35,96,267,...
3

%I #18 Sep 30 2020 05:00:47

%S 1,2,1,5,4,1,13,14,6,1,35,46,27,8,1,96,147,107,44,10,1,267,462,396,

%T 204,65,12,1,750,1437,1404,858,345,90,14,1,2123,4438,4835,3388,1625,

%U 538,119,16,1,6046,13637,16305,12802,7072,2805,791,152,18,1

%N Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A005773(n+1)= 1,2,5,13,35,96,267,...

%C Equal to A064189*B = B*A054336 = B^(-1)*A035324, B = A007318.

%F Sum_{k, 0<=k<=n} T(n,k)*x^k = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -2, -1, 0, 1 respectively.

%F T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*(-1)^i. - _Philippe Deléham_, Feb 23 2012

%F T(n,k) = (k+1)*Sum_{j=0..n-k} C(2*j+k,j)*(-1)^j*3^(n-j-k)*C(n+1,j+k+1)/(n+1). - _Vladimir Kruchinin_ Sep 30 2020

%e Triangle T(n,k) (0<=k<=n) begins:

%e 1;

%e 2, 1;

%e 5, 4, 1;

%e 13, 14, 6, 1;

%e 35, 46, 27, 8, 1;

%e 96, 147, 107, 44, 10, 1;

%e ...

%o (Maxima)

%o T(n,k)=((k+1)*sum(binomial(2*j+k,j)*(-1)^j*3^(n-j-k)*binomial(n+1,j+k+1),j,0,n-k))/(n+1); /* _Vladimir Kruchinin_ Sep 30 2020 */

%Y Cf. A097609, A064189.

%K nonn,tabl

%O 0,2

%A _Philippe Deléham_, Dec 10 2009