login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171485 Beukers integral int(int( -log(x*y) / (1-x*y) * P_n(2*x-1) * P_n(2*y-1),x=0..1,y=0..1)) = (A(n) + B(n)*zeta(3)) / A003418(n)^3. This sequence gives values of B(n). 1
2, 10, 1168, 624240, 114051456, 353810160000, 9271076400000, 86580328116240000, 19402654331894400000, 15000926812307614080000, 437120128035736887168000, 17196604114594832318160000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Values of A(n) are given in A171484. P_n(x) are the Legendre Polynomials defined by n!*P_n(x) = (d/dx)^n (x^n*(1-x)^n), see A008316.

LINKS

Table of n, a(n) for n=0..11.

F. Beukers, A note on the irrationality of zeta(2) and zeta(3), Bull. London Math. Soc. 11 (1979) 268-272.

Wikipedia, Apery's theorem

CROSSREFS

Cf. A002117, A104684.

Sequence in context: A074333 A008559 A245728 * A215650 A057015 A059732

Adjacent sequences:  A171482 A171483 A171484 * A171486 A171487 A171488

KEYWORD

nonn

AUTHOR

Max Alekseyev, Dec 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 22:51 EST 2016. Contains 278957 sequences.