login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171485 Beukers integral int(int( -log(x*y) / (1-x*y) * P_n(2*x-1) * P_n(2*y-1),x=0..1,y=0..1)) = (A(n) + B(n)*zeta(3)) / A003418(n)^3. This sequence gives values of B(n). 1
2, 10, 1168, 624240, 114051456, 353810160000, 9271076400000, 86580328116240000, 19402654331894400000, 15000926812307614080000, 437120128035736887168000, 17196604114594832318160000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Values of A(n) are given in A171484. P_n(x) are the Legendre Polynomials defined by n!*P_n(x) = (d/dx)^n (x^n*(1-x)^n), see A008316.

LINKS

Table of n, a(n) for n=0..11.

F. Beukers, A note on the irrationality of zeta(2) and zeta(3), Bull. London Math. Soc. 11 (1979) 268-272.

Apery's theorem. Wikipedia.

CROSSREFS

Cf. A002117, A104684.

Sequence in context: A074333 A008559 A245728 * A215650 A057015 A059732

Adjacent sequences:  A171482 A171483 A171484 * A171486 A171487 A171488

KEYWORD

nonn

AUTHOR

Max Alekseyev, Dec 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 23 12:11 EDT 2015. Contains 257771 sequences.