login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291882
a(n) is the least number k such that sigma(k+n) = Sum_{j=1..i} sigma(d_j), where d_j are the divisors of k.
1
1, 2, 10, 1183, 4514, 1179, 38, 3325, 9, 126855, 290, 261, 18, 6, 1930, 104771947, 344, 58, 326, 117, 270754, 13875, 32, 45, 32, 74, 70, 38, 18, 21200761175, 206, 1179, 86, 16, 56, 357, 85, 18, 124, 39948225, 361, 171, 1118, 63, 122, 38, 30, 239267, 482, 1367247
OFFSET
0,2
COMMENTS
a(123) > 10^11. - Giovanni Resta, Sep 15 2017
EXAMPLE
Divisors of 1183 are 1, 7, 13, 91, 169 and 1183: sigma(1) + sigma(7) + sigma(13) + sigma(91) + sigma(169) + sigma(1183)= 1 + 8 + 14 + 112 + 183 + 1464 = 1782 = sigma(1183+3) and 1183 is the least number to have this property.
MAPLE
with(numtheory): P:=proc(q) local a, b, j, k, n; for n from 0 to q do for k from 1 to q do
a:=divisors(k); b:=add(sigma(a[j]), j=1..nops(a));
if sigma(k+n)=b then print(k); break; fi; od; od; end: P(10^6);
PROG
(PARI) a(n) = my(k = 1); while(sigma(k+n) != sumdiv(k, d, sigma(d)), k++); k; \\ Michel Marcus, Sep 19 2017
CROSSREFS
Sequence in context: A008559 A245728 A171485 * A215650 A057015 A059732
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Sep 05 2017
EXTENSIONS
a(15), a(29), a(39), a(75), a(84), a(89), a(111) from Giovanni Resta, Sep 15 2017
STATUS
approved