The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291879 Number of monomials of the Schubert polynomial of the permutation 351624 tensor 1^n. 1
 1, 8, 6720, 561120560, 4557185891241984, 3571558033324129373292768, 269111599998006391761541640176800000, 1945556482213500279178010210766074095827609600000, 1347912754604769492992184400055703948513202427323999206349209600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The permutation 351624 tensor 1^n is the permutation whose permutation matrix is obtained from that of 351624 by replacing each 1 with an n X n identity matrix. LINKS Table of n, a(n) for n=0..8. A. H. Morales, I. Pak, G. Panova, Hook formulas for skew shapes III. Multivariate and product formulas, arXiv:1707.00931 [math.CO], 2017. R. P. Stanley, Some Schubert shenanigans, arXiv:1704.00851 [math.CO], 2017. FORMULA a(n) = b(n)^5*b(3*n)^2*b(5*n)/(b(2*n)^4*b(4*n)^2) where b(n) = 1!*2!*...*(n-1)! is a superfactorial A000178(n-1). [corrected by Vaclav Kotesovec, Apr 08 2021] a(n) = c(n)*b(3*n)^2*b(6*n)/((7*n^2)!*b(2*n)^2*b(4*n)^2) where b(n) = 1!*2!*...*(n-1)! is a superfactorial A000178(n-1) and c(n) = A291871. a(n) ~ exp(1/6) * 3^(9*n^2 - 1/6) * 5^(25*n^2/2 - 1/12) / (A^2 * n^(1/6) * 2^(40*n^2 - 2/3)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2021 EXAMPLE For n=1 we have that a(1)=8 since the Schubert polynomial of 351624 equals the following sum of eight monomials: x0^3*x1^3*x2 + x0^3*x1^2*x2^2 + x0^2*x1^3*x2^2 + x0^3*x1^3*x3 + x0^3*x1^2*x2*x3 + x0^2*x1^3*x2*x3 + x0^3*x1^2*x3^2 + x0^2*x1^3*x3^2. MATHEMATICA Table[BarnesG[n + 1]^5 * BarnesG[3*n + 1]^2 * BarnesG[5*n + 1] / (BarnesG[2*n + 1]^4 * BarnesG[4*n + 1]^2), {n, 0, 10}] (* Vaclav Kotesovec, Apr 08 2021 *) PROG (Sage) def b(n): return mul([factorial(i) for i in range(1, n)]) def a(n): return b(n)^5*b(3*n)^2*b(5*n)/(b(2*n)^4*b(4*n)^2) [a(n) for n in range(10)] (PARI) b(n) = prod(k=1, n-1, k!); a(n) = b(n)^5*b(3*n)^2*b(5*n)/(b(2*n)^4*b(4*n)^2); \\ Michel Marcus, Sep 07 2017 CROSSREFS Cf. A000178, A008793, A291871. Sequence in context: A114133 A221233 A173190 * A281450 A354564 A354567 Adjacent sequences: A291876 A291877 A291878 * A291880 A291881 A291882 KEYWORD nonn AUTHOR Alejandro H. Morales, Sep 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 04:50 EDT 2024. Contains 375085 sequences. (Running on oeis4.)