The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291871 Number of standard Young tableaux of skew shape (3*n^(2*n), 2*n^n)/(n^n). 2
 1, 42, 14617044842400, 5458228515594914179387748450655273588000, 864891828322912925373153355728411014930091519471102108791040960580578545212124160000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The number of standard Young tableaux of a fixed skew shape has a determinantal formula, the Jacobi-Trudi formula. It is rare when a family of skew shapes has a product formula for the number of standard Young tableaux. This product formula has independently been proved using a combinatorial model for the Selberg integral (by Kim and Oh) and using the Naruse hook-length formula for skew shapes (by Morales, Pak and Panova). LINKS Table of n, a(n) for n=0..4. J. S. Kim and S. Oh, The Selberg integral and Young books, arXiv:1409.1317 [math.CO], 2014. J. S. Kim and S. Oh, The Selberg integral and Young books, J. Combin. Theory Ser. A 145 (2017), 1-24. A. H. Morales, I. Pak, G. Panova, Hook formulas for skew shapes III. Multivariate and product formulas, arXiv:1707.00931 [math.CO], 2017. FORMULA a(n) = (7*n^2)!*b(n)^5*b(5*n)/(b(2*n)^2*b(6*n)) where b(n) = 1!*2!*...*(n-1)! is a superfactorial A000178(n-1). a(n) = (7*n^2)!*c(n)*b(n)^2*b(2*n)*b(5*n)/(b(6*n)*b(3*n)) where b(n) = 1!*2!*...*(n-1)! is a superfactorial A000178(n-1) and c(n) = A008793. log a(n) = 7*n^2*log(n) + (75/2 - 15*log(2) - 18*log(3) + 25/2*log(5) + 7*log(7))*n^2 + O(n*log(n)). (See Example 6.2 in Morales et al.) a(n) ~ sqrt(Pi) * 5^(25*n^2/2 - 1/12) * 7^(7*n^2 + 1/2) * exp(7*n^2/2 + 1/4) * n^(7*n^2 + 3/4) / (A^3 * 2^(22*n^2 - 3/4) * 3^(18*n^2 - 1/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2021 EXAMPLE a(1)=42 since there are 42 standard Young tableaux of skew shape 332/1 since this is the same as the number of standard Young tableaux of straight shape 332 given by the hook-length formula: 42 = 8!/(2^2*3*4^2*5). MAPLE b:=n->mul(factorial(i), i=1..n-1): a:=n->factorial(7*n^2)*b(n)^5*b(5*n)/(b(2*n)^2*b(6*n)): seq(a(i), i=0..9); MATHEMATICA b[n_] := Product[i!, {i, n - 1}]; Table[(7 n^2)!*b[n]^5*b[5 n]/(b[2 n]^2*b[6 n]), {n, 0, 4}] (* Michael De Vlieger, Sep 10 2017 *) PROG (Sage) def b(n): return mul([factorial(i) for i in range(1, n)]) def a(n): return factorial(7*n^2)*b(n)^5*b(5*n)/(b(2*n)^2*b(6*n)) [a(n) for n in range(10)] CROSSREFS Cf. A000178, A008793, A291879, A291908, A000085, A061343. Sequence in context: A238637 A070177 A173866 * A357001 A114786 A139424 Adjacent sequences: A291868 A291869 A291870 * A291872 A291873 A291874 KEYWORD nonn AUTHOR Alejandro H. Morales, Sep 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 01:47 EDT 2024. Contains 374575 sequences. (Running on oeis4.)