

A291877


Consider the graph with one central vertex connected to three outer vertices (a star graph). Then, a(n) is the minimum number of moves required to transfer a stack of n discs from the central vertex to an outer vertex, moving discs to adjacent vertices, following the rules of the Towers of Hanoi.


1



1, 4, 7, 14, 23, 32, 47, 68, 93, 120, 153, 198, 255, 318, 399, 480, 579, 700, 835, 1012, 1201, 1428
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..22.
Caroline Holz auf der Heide. Distances and automatic sequences in distinguished variants of Hanoi graphs. Dissertation. Fakultät für Mathematik, Informatik und Statistik. LudwigMaximiliansUniversität München, 2016. [See Chapter 3.]
Paul K. Stockmeyer, Variations on the FourPost Tower of Hanoi Puzzle, Congr. Numer., 102 (1994), pp. 312.
Eric Weisstein's World of Mathematics, Star Graph
Index entries for sequences related to Towers of Hanoi


CROSSREFS

Cf. A291876.
Sequence in context: A146678 A146417 A008370 * A048241 A003404 A139025
Adjacent sequences: A291874 A291875 A291876 * A291878 A291879 A291880


KEYWORD

nonn,hard,more


AUTHOR

Eric M. Schmidt, Sep 04 2017


EXTENSIONS

Clarified definition and a(16)a(18) added by Borut Lužar, Dec 11 2017
a(19)a(21) by Borut Lužar, Mar 07 2019
a(22) added by Ciril Petr, Jun 22 2021


STATUS

approved



