login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003404
Number of solid partitions of n supported on graph of cube.
(Formerly M3310)
4
1, 1, 4, 7, 14, 23, 41, 63, 104, 152, 230, 327, 470, 647, 897, 1202, 1616, 2117, 2775, 3566, 4580, 5787, 7301, 9092, 11298, 13885, 17028, 20688, 25076, 30154, 36172, 43094, 51221, 60511, 71323, 83622, 97822, 113893, 132323, 153083
OFFSET
0,3
REFERENCES
P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Roal Soc., 211 (1912), 345-373 (see Section 98).
J. C. P. Miller, On the enumeration of partially ordered sets of integers, pp. 109-124 of T. P. McDonough and V. C. Mavron, editors, Combinatorics: Proceedings of the Fourth British Combinatorial Conference 1973. London Mathematical Society, Lecture Note Series, Number 13, Cambridge University Press, NY, 1974. [The g.f. shown below appears on page 121. - N. J. A. Sloane, Apr 22 2015]
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package, p. 14.
G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis: The Omega Package, Europ. J. Combin., 22 (2001), 887-904.
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-1,0,-1,0,1,2,1,0,1,-1,-1,-2,-1,-1,1,0,1,2,1,0,-1,0,-1,0,-1,0,0,1,1,-1).
FORMULA
G.f.: (1 + 2*q^2 + 2*q^3 + 3*q^4 + 3*q^5 + 5*q^6 + 4*q^7 + 8*q^8 + 4*q^9 + 5*q^10 + 3*q^11 + 3*q^12 + 2*q^13 + 2*q^14 + q^16)/((1 - q)*(1 - q^2)*(1 - q^3)*(1 - q^4)*(1 - q^5)*(1 - q^6)*(1 - q^7)*(1 - q^8)).
MATHEMATICA
CoefficientList[Series[(1+2*q^2+2*q^3+3*q^4+3*q^5+5*q^6+4*q^7+8*q^8+ 4*q^9+ 5*q^10+ 3*q^11+3*q^12+2*q^13+2*q^14+q^16)/((1-q)*(1-q^2)*(1-q^3)*(1-q^4)* (1-q^5)*(1-q^6)*(1-q^7)*(1-q^8)), {q, 0, 40}], q] (* Harvey P. Dale, Mar 07 2012 *)
LinearRecurrence[{1, 1, 0, 0, -1, 0, -1, 0, -1, 0, 1, 2, 1, 0, 1, -1, -1, -2, -1, -1, 1, 0, 1, 2, 1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 1, -1}, {1, 1, 4, 7, 14, 23, 41, 63, 104, 152, 230, 327, 470, 647, 897, 1202, 1616, 2117, 2775, 3566, 4580, 5787, 7301, 9092, 11298, 13885, 17028, 20688, 25076, 30154, 36172, 43094, 51221, 60511, 71323, 83622}, 50] (* Harvey P. Dale, Jun 11 2022 *)
KEYWORD
nonn,nice,easy
STATUS
approved