login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291880
Numbers n such that phi(n) - 1 | sigma(n).
0
3, 4, 5, 6, 8, 10, 20, 22, 40, 76, 80, 108, 160, 204, 320, 640, 1072, 1280, 2560, 4192, 5120, 10240, 20480, 40960, 49344, 81920, 163840, 327680, 655360, 1310720, 2621440, 4197376, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 268460032, 335544320, 671088640, 1073790976, 1342177280, 2684354560, 5368709120
OFFSET
1,1
COMMENTS
Numbers n such that A109606(n) | A000203(n).
All numbers of the form 5*2^x, with x >= 0, are part of the sequence (A020714).
Values of the ratio sigma(n)/(phi(n)-1) are 4, 7, 2, 12, 5, 6, 6, 4, 6, 4, 6, 8, 6, 8, 6, 6, 4, 6, 6, 4, 6, 6, 6, 6, 8, 6, 6, 6, 6, 6, 6, 4, 6, ...
Sequence contains also terms of the form 2^(n-2)*(2^n+3) where 2^n+3 is a prime and n > 3, like 22, 76, 1072, 4192, 4197376, 268460032. See A057733 for primes of the form 2^n+3. - Michel Marcus, Sep 17 2017
EXAMPLE
sigma(1072) = 2108, phi(1072) = 528 and 2108/(528 - 1) = 4.
MAPLE
with(numtheory): P:=proc(q) local n; for n from 3 to q do
if type(sigma(n)/(phi(n)-1), integer) then print(n); fi; od; end: P(10^7);
MATHEMATICA
Select[Range[3, 10^6], Divisible[DivisorSigma[1, #], EulerPhi[#] - 1] &] (* Michael De Vlieger, Sep 06 2017 *)
PROG
(PARI) isok(n) = denominator(sigma(n)/(eulerphi(n)-1)) == 1; \\ Michel Marcus, Sep 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Sep 05 2017
EXTENSIONS
a(34)-a(41) from Michel Marcus, Sep 15 2017
a(42)-a(45) from Michel Marcus, Sep 21 2017
STATUS
approved