login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201165
Triangle read by rows: Pascal's triangle (A007318) times the Fibonacci triangle (A139375).
2
1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 34, 48, 27, 8, 1, 89, 166, 111, 44, 10, 1, 233, 587, 443, 210, 65, 12, 1, 610, 2138, 1761, 941, 353, 90, 14, 1, 1597, 8046, 7059, 4101, 1752, 548, 119, 16, 1, 4181, 31285, 28701, 17697, 8289, 2984, 803, 152, 18, 1, 10946, 125396, 118631, 76342, 38233, 15231, 4761, 1126, 189, 20, 1
OFFSET
0,2
LINKS
Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974.
FORMULA
T(n,k) = Sum_{j=k..n} A007318(n,j)*A139375(j,k).
EXAMPLE
Triangle begins:
1
2 1
5 4 1
13 14 6 1
34 48 27 8 1
89 166 111 44 10 1
233 587 443 210 65 12 1
...
MAPLE
A201165 := proc(n, k)
add( binomial(n, j)*A139375(j, k), j=k..n) ;
end proc: # R. J. Mathar, Jul 09 2013
MATHEMATICA
F[n_, k_] := If[k == 0, Fibonacci[n+1], k Sum[Fibonacci[i+1] Binomial[2(n-i)-k-1, n-i-1]/(n-i), {i, 0, n-k}]];
T[n_, k_] := Sum[Binomial[n, j] F[j, k], {j, k, n}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 03 2020 *)
CROSSREFS
Cf. A007318, A139375, A201166, A001519 (1st column).
Sequence in context: A201166 A318942 A188137 * A171488 A171651 A348451
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 27 2011
STATUS
approved