login
A201166
Triangle read by rows: the Fibonacci triangle times Pascal's triangle (A007318).
2
1, 2, 1, 5, 4, 1, 12, 14, 6, 1, 31, 46, 27, 8, 1, 85, 150, 108, 44, 10, 1, 248, 493, 410, 206, 65, 12, 1, 762, 1644, 1519, 887, 348, 90, 14, 1, 2440, 5569, 5569, 3641, 1673, 542, 119, 16, 1, 8064, 19147, 20348, 14524, 7529, 2876, 796, 152, 18, 1, 27300, 66706, 74367, 56925, 32458, 14077, 4620, 1118, 189, 20, 1
OFFSET
0,2
LINKS
Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974.
EXAMPLE
Triangle begins:
1
2 1
5 4 1
12 14 6 1
31 46 27 8 1
85 150 108 44 10 1
248 493 410 206 65 12 1
...
MAPLE
A201166 := proc(n, k)
add( A139375(n, j)*binomial(j, k), j=k..n) ;
end proc: # R. J. Mathar, Jul 09 2013
MATHEMATICA
F[n_, k_] := If[k == 0, Fibonacci[n+1], k Sum[Fibonacci[i+1] Binomial[2(n-i)-k-1, n-i-1]/(n-i), {i, 0, n-k}]];
T[n_, k_] := Sum[F[n, j] Binomial[j, k], {j, k, n}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 02 2020 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 27 2011
STATUS
approved