login
A097692
Triangle read by rows: a(n,k) = number of paths of n upsteps U and n downsteps D that contain k UDUs.
5
1, 2, 4, 2, 10, 8, 2, 26, 30, 12, 2, 70, 104, 60, 16, 2, 192, 350, 260, 100, 20, 2, 534, 1152, 1050, 520, 150, 24, 2, 1500, 3738, 4032, 2450, 910, 210, 28, 2, 4246, 12000, 14952, 10752, 4900, 1456, 280, 32, 2, 12092, 38214, 54000, 44856, 24192, 8820, 2184, 360, 36, 2
OFFSET
0,2
COMMENTS
See A091869 for the distribution of the parameter "number of UDUs" on Dyck paths.
REFERENCES
Aristidis Sapounakis, Panagiotis Tsikouras, Ioannis Tasoulas, Kostas Manes, Strings of Length 3 in Grand-Dyck Paths and the Chung-Feller Property, Electr. J. Combinatorics, 19 (2012), #P2. - From N. J. A. Sloane, Feb 06 2013
LINKS
FORMULA
G.f.: ((1 + x - x*y)/(1 - 3*x - x*y))^(1/2) = Sum_{n>=0, k>=0} a(n,k) x^n y^k.
EXAMPLE
Table begins
\ k 0, 1, 2, ...
n
0 | 1
1 | 2
2 | 4, 2
3 | 10, 8, 2
4 | 26, 30, 12, 2
5 | 70, 104, 60, 16, 2
6 |192, 350, 260, 100, 20, 2
7 |534, 1152, 1050, 520, 150, 24, 2
The path UDUDUD contains 2 UDUs and a(2,1) = 2 because each of UDUD, DUDU contains one UDU.
MAPLE
b:= proc(u, d, t) option remember; `if`(u=0 and d=0, 1,
expand(`if`(u=0, 0, b(u-1, d, 2)*`if`(t=3, x, 1))
+`if`(d=0, 0, b(u, d-1, `if`(t=2, 3, 1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 1)):
seq(T(n), n=0..12); # Alois P. Heinz, Apr 29 2015
MATHEMATICA
gfForBalancedByNumberUDU=Sqrt[(1 + x - x*y)/(1 - 3*x - x*y)]; Map[CoefficientList[ #, y]&, CoefficientList[Normal[Series[gfForBalancedByNumberUDU, {x, 0, 8}, {y, 0, 8}]], x]]
CROSSREFS
Column k=0 is A025565. The row sums are the (even) central binomial coefficients A000984.
Cf. A171651.
Sequence in context: A236959 A366032 A097577 * A118920 A305260 A162982
KEYWORD
nonn,tabf
AUTHOR
David Callan, Aug 19 2004; corrected Jun 10 2005
EXTENSIONS
Keyword tabl changed to tabf by Michel Marcus, Apr 07 2013
STATUS
approved