login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T, read by rows : T(n,k) = A007318(n,k)*A005773(n+1-k).
4

%I #19 Dec 16 2023 16:03:37

%S 1,2,1,5,4,1,13,15,6,1,35,52,30,8,1,96,175,130,50,10,1,267,576,525,

%T 260,75,12,1,750,1869,2016,1225,455,105,14,1,2123,6000,7476,5376,2450,

%U 728,140,16,1,6046,19107,27000,22428,12096,4410,1092,180,18,1

%N Triangle T, read by rows : T(n,k) = A007318(n,k)*A005773(n+1-k).

%H Alois P. Heinz, <a href="/A171651/b171651.txt">Rows n = 0..140, flattened</a>

%F Sum_{k, 0<=k<=n} T(n,k)*x^k = A168491(n), A099323(n), A001405(n), A005773(n+1), A001700(n), A026378(n+1), A005573(n), A122898(n) for x = -3, -2, -1, 0, 1, 2, 3, 4 respectively.

%F E.g.f. of column k: exp(x)*(BesselI(0,2*x)+BesselI(1,2*x))*x^k / k!. - _Mélika Tebni_, Dec 16 2023

%e Triangle begins:

%e 1;

%e 2, 1;

%e 5, 4, 1;

%e 13, 15, 6, 1;

%e 35, 52, 30, 8, 1;

%e ...

%p b:= proc(u, d, t) option remember; `if`(u=0 and d=0, 1/2,

%p expand(`if`(u=0, 0, b(u-1, d, 2)*`if`(t=3, x, 1))

%p +`if`(d=0, 0, b(u, d-1, `if`(t=2, 3, 1)))))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n+1$2, 1)):

%p seq(T(n), n=0..12); # _Alois P. Heinz_, Apr 29 2015

%p # second program:

%p A171651:= (n, k)-> binomial(n,k)*add((-1)^(n-k-j)*binomial(n-k,j)*binomial(2*j+1,j+1),j=0..n-k): seq(print(seq(A171651(n, k), k=0..n)), n=0..9); # _Mélika Tebni_, Dec 16 2023

%t b[u_, d_, t_] := b[u, d, t] = If[u == 0 && d == 0, 1/2, Expand[If[u == 0, 0, b[u-1, d, 2]*If[t == 3, x, 1]] + If[d == 0, 0, b[u, d-1, If[t == 2, 3, 1]]]]];

%t T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n+1, n+1, 1] ];

%t Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, May 21 2016, after _Alois P. Heinz_ *)

%Y Cf. A097692.

%Y Cf. A007318, A005773.

%Y Cf. A168491, A099323, A001405, A005773, A001700, A026378, A005573, A122898.

%K nonn,tabl

%O 0,2

%A _Philippe Deléham_, Dec 14 2009

%E Corrected by _Philippe Deléham_, Dec 18 2009