login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171645
Partial products of Product_{n=1..inf.} (p(n)/p(n-1)*p(n)/p(n-1)), = 2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7)*(11/7)*...; p = primes, A000040, a(1) = 2.
2
2, 4, 8, 12, 18, 30, 50, 70, 98, 154, 242, 286, 338, 442, 578, 646, 722, 874, 1058, 1334, 1682, 1798, 1922, 2294, 2738
OFFSET
1,1
COMMENTS
Analogous formulas using A000041 terms = A171646; Fibonacci numbers, A006498; factorials, A010551.
LINKS
FORMULA
Partial products of Product_{n=1..inf.} (p(n)/p(n-1)*p(n)/p(n-1)), =
2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7)*(11/7)*...; p = primes,
A000040, a(1) = 2.
a(n)=2*A057602(n-1). [From R. J. Mathar, Dec 15 2009]
EXAMPLE
a(10) = 154 = 2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).
MATHEMATICA
FoldList[Times, Join[{2, 2, 2}, Flatten[{#[[2]]/#[[1]], #[[2]]/#[[1]]}&/@Partition[Prime[Range[20]], 2, 1]]]] (* Harvey P. Dale, Oct 02 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Dec 13 2009
STATUS
approved