login
A318187
Number of totally transitive rooted trees with n leaves.
4
2, 2, 4, 8, 16, 32, 62, 122, 234, 451, 857, 1630, 3068, 5772, 10778, 20093, 37259
OFFSET
1,1
COMMENTS
A rooted tree is totally transitive if every branch of the root is totally transitive and every branch of a branch of the root is also a branch of the root.
EXAMPLE
The a(5) = 16 totally transitive rooted trees with 5 leaves:
(o(o)(o(o)(o)))
(o(o)(o)(o(o)))
(o(o)(o)(o)(o))
(o(o)(oo(o)))
(oo(o)(o(o)))
(o(o)(o)(oo))
(oo(o)(o)(o))
(o(o)(ooo))
(o(oo)(oo))
(oo(o)(oo))
(ooo(o)(o))
(o(oooo))
(oo(ooo))
(ooo(oo))
(oooo(o))
(ooooo)
MATHEMATICA
totralv[n_]:=totralv[n]=If[n==1, {{}, {{}}}, Join@@Table[Select[Union[Sort/@Tuples[totralv/@c]], Complement[Union@@#, #]=={}&], {c, Select[IntegerPartitions[n], Length[#]>1&]}]];
Table[Length[totralv[n]], {n, 8}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Aug 20 2018
STATUS
approved