This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318184 a(n) = 2^(n * (n - 1)/2) * 3^((n - 1) * (n - 2)) * n^(n - 3). 5
 1, 1, 72, 186624, 13604889600, 24679069470425088, 1036715783690392172494848, 962459606796748852884396910313472, 19112837387997044228759204010262201783812096, 7926475921550134182551017087135940323782552453120000000, 67406870957147550175650545441605700298239194363455522532832462241792 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Discriminant of Fermat polynomials. F(0)=0, F(1)=1 and F(n) = 3x F(n - 1) -2 F(n - 2) if n>1. LINKS Muniru A Asiru, Table of n, a(n) for n = 1..39 Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018. Eric Weisstein's World of Mathematics, Discriminant Eric Weisstein's World of Mathematics, Fermat Polynomial MAPLE seq(2^(n*(n-1)/2)*3^((n-1)*(n-2))*n^(n-3), n=1..12); # Muniru A Asiru, Dec 07 2018 MATHEMATICA F[0] = 0; F[1] = 1; F[n_] := F[n] = 3 x F[n - 1] - 2 F[n - 2]; a[n_] := Discriminant[F[n], x]; Array[a, 11] (* Jean-François Alcover, Dec 07 2018 *) PROG (PARI) a(n) = 2^(n*(n-1)/2) * 3^((n-1)*(n-2)) * n^(n-3); \\ Michel Marcus, Dec 07 2018 CROSSREFS Cf. A193678, A007701, A007701, A193678, A303941. Sequence in context: A276014 A260779 A279656 * A290182 A008703 A135320 Adjacent sequences:  A318181 A318182 A318183 * A318185 A318186 A318187 KEYWORD nonn AUTHOR Rigoberto Florez, Aug 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 22:25 EDT 2019. Contains 328038 sequences. (Running on oeis4.)