|
|
A260779
|
|
Coefficients arising from expansion of 1/(2*P(u)) in powers of u, where P is the Weierstrass P-function.
|
|
1
|
|
|
1, -72, 48384, -134120448, 1055796166656, -18987644270149632, 676784742282773397504, -43249455805185586718834688, 4599203617006025540525554139136, -768291761151281123722697889747566592, 192565676807771292904270021964021234663424
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This is for the lemniscate case where g2=4, g3=0. - Michael Somos, Jul 10 2024
|
|
LINKS
|
|
|
FORMULA
|
Hurwitz (Eq. (84)) gives a recurrence.
|
|
MAPLE
|
option remember;
if n = 0 then
1;
else
a :=0 ;
for r from 0 to n-1 do
s := n-1-r ;
if s >=0 and s <= n-1 then
a := a+procname(r)*procname(s) *binomial(4*n, 4*r+2) ;
end if;
end do:
a*(-12) ;
end if;
|
|
MATHEMATICA
|
Block[{a}, a[n_] := If[n < 1, Boole[n == 0], Sum[Binomial[4 n, 4 j + 2] a[j] a[n - 1 - j], {j, 0, n - 1}]]; Array[(-12)^#*a[#] &, 11, 0]] (* Michael De Vlieger, Nov 20 2019, after Harvey P. Dale at A144849 *)
a[ n_] := If[n<0, 0, With[{m = 4*n+2}, m!/2*SeriesCoefficient[ 1/WeierstrassP[u, {4, 0}], {u, 0, m}]]]; (* Michael Somos, Jul 10 2024 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|