login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260779
Coefficients arising from expansion of 1/(2*P(u)) in powers of u, where P is the Weierstrass P-function.
1
1, -72, 48384, -134120448, 1055796166656, -18987644270149632, 676784742282773397504, -43249455805185586718834688, 4599203617006025540525554139136, -768291761151281123722697889747566592, 192565676807771292904270021964021234663424
OFFSET
0,2
COMMENTS
This is for the lemniscate case where g2=4, g3=0. - Michael Somos, Jul 10 2024
LINKS
A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII. [Annotated scanned copy] See Eq. (16) and Table III.
Tanay Wakhare and Christophe Vignat, Taylor coefficients of the Jacobi theta3(q) function, arXiv:1909.01508 [math.NT], 2019.
FORMULA
Hurwitz (Eq. (84)) gives a recurrence.
a(n) = (-12)^n * A144849(n). - R. J. Mathar, Aug 03 2015
MAPLE
A260779 := proc(n)
option remember;
if n = 0 then
1;
else
a :=0 ;
for r from 0 to n-1 do
s := n-1-r ;
if s >=0 and s <= n-1 then
a := a+procname(r)*procname(s) *binomial(4*n, 4*r+2) ;
end if;
end do:
a*(-12) ;
end if;
end proc: # R. J. Mathar, Aug 03 2015
MATHEMATICA
Block[{a}, a[n_] := If[n < 1, Boole[n == 0], Sum[Binomial[4 n, 4 j + 2] a[j] a[n - 1 - j], {j, 0, n - 1}]]; Array[(-12)^#*a[#] &, 11, 0]] (* Michael De Vlieger, Nov 20 2019, after Harvey P. Dale at A144849 *)
a[ n_] := If[n<0, 0, With[{m = 4*n+2}, m!/2*SeriesCoefficient[ 1/WeierstrassP[u, {4, 0}], {u, 0, m}]]]; (* Michael Somos, Jul 10 2024 *)
CROSSREFS
Cf. A144849.
Sequence in context: A292198 A177326 A276014 * A279656 A318184 A290182
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Aug 02 2015
STATUS
approved