login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144849 Coefficients in the expansion of the squared sine lemniscate function 4
1, 6, 336, 77616, 50916096, 76307083776, 226653840838656, 1207012936807028736, 10696277678308486742016, 148900090457044541209706496, 3110043187741674836967136690176, 93885206124269301790338015801901056, 3970859549814416912519992571903015387136 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Denoted by \beta_n in Lomont and Brillhart (2011) on page xiii.

Gives the number of Increasing bilabeled strict binary trees with 4n+2 labels. - Markus Kuba, Nov 18 2014

REFERENCES

J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 86.

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..100

O. Bodini, M. Dien, X. Fontaine, A. Genitrini, and H. K. Hwang, Increasing Diamonds, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp 207-219 2016 DOI 10.1007/978-3-662-49529-2_16; Lecture Notes in Computer Science Series Volume 9644.

Markus Kuba, Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], (17-November-2014).

Tanay Wakhare, Christophe Vignat, Taylor coefficients of the Jacobi theta3(q) function, arXiv:1909.01508 [math.NT], 2019.

Eric Weisstein's World of Mathematics, Lemniscate Constant

FORMULA

E.g.f.: sl(x)^2 = 2 Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 2) / (4*k + 2)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - Michael Somos, Apr 25 2011

a(0) = 1, a(n + 1) = Sum_{j=0..n} binomial( 4*n + 4, 4*j + 2) * a(j) * a(n - j).

G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b(n) = A139757(n) * n/3. - Michael Somos, Jan 03 2013

E.g.f.: Increasing bilabeled strict binary trees of 2n+2 labels (including the zeros): T(z)=Sum_{n>=1}T_n z^{2n}/(2n)! = 6/sqrt(3)*WeierstrassP(3^{-1/4}z+LemniscateConstant; g_2,g_3), with g_2=-1 and g_3=0; alternatively, T(z)=sqrt(3)*i*sl^2(z/(3^{1/4}(1+i))). - Markus Kuba, Nov 18 2014

EXAMPLE

G.f. = 1 + 6*x + 336*x^2 + 77616*x^3 + 50916096*x^4 + ...

MAPLE

a[0]:=1; b[0]:=1;

for n from 1 to 15 do b[n]:=add(binomial(4*n, 4*j+2)*b[j]*b[n-1-j], j=0..n-1);

a[n]:=(1/3)*add(binomial(4*n-1, 4*j+1)*a[j]*b[n-1-j], j=0..n-1); od:

tb:=[seq(b[n], n=0..15)];

MATHEMATICA

a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ JacobiSD[ x, 1/2]^2, {x, 0, m}] / (2 (-3)^n)]]; (* Michael Somos, Apr 25 2011 *)

a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]]^2 / 2, {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)

a[ n_] := If[ n < 1, Boole[n == 0], Sum[ Binomial[ 4 n, 4 j + 2] a[j] a[ n - 1 - j], {j, 0, n - 1}]]; (* Michael Somos, Apr 25 2011 *)

PROG

(PARI) {a(n) = my(m); if( n<0, 0, m = 4*n + 2; m! * polcoeff( (serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))))^2 / 2, m))}; /* Michael Somos, Apr 25 2011 */

CROSSREFS

Cf. A064853, A144853.

Sequence in context: A295925 A210769 A003031 * A212490 A047941 A229501

Adjacent sequences:  A144846 A144847 A144848 * A144850 A144851 A144852

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 10:39 EST 2021. Contains 349427 sequences. (Running on oeis4.)