login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229501 Numbers k such that Sum_{i=1..k} i' == 0 (mod k), where i' is the arithmetic derivative of i. 2
1, 6, 344, 1475, 3816, 5463, 18468, 78894, 515108, 566932, 1600370, 14380856, 27129564, 28669993, 31401775, 39638108, 2245196680, 2878016306, 5890364987, 7838325300, 23168759538, 63226475740, 121869542099 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Next term > 10^7. - M. F. Hasler, Sep 25 2013
a(21) > 10^10. - Donovan Johnson, Sep 25 2013
a(24) > 10^12. - Giovanni Resta, Mar 13 2014
LINKS
FORMULA
A229501 = { n | A190121(n) = 0 (mod n) }. - M. F. Hasler, Sep 25 2013
EXAMPLE
1' + 2' + 3' + 4' + 5' + 6' = 0 + 1 + 1 + 4 + 1 + 5 = 12, and 12 mod 6 = 0.
MAPLE
with(numtheory); P:= proc(q) local a, n, p; a:=0;
for n from 1 to q do a:=a+n*add(op(2, p)/op(1, p), p=ifactors(n)[2]);
if a mod n=0 then print(n); fi; od; end: P(10^6);
PROG
(PARI) s=0; for(n=1, 1e7, (s+=A003415(n))%n||print1(n", ")) \\ - M. F. Hasler, Sep 25 2013
CROSSREFS
Sequence in context: A144849 A212490 A047941 * A289738 A211089 A221923
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Sep 25 2013
EXTENSIONS
Double-checked below 10^6 and extended up to 10^7 by M. F. Hasler, Sep 25 2013
a(12)-a(20) from Donovan Johnson, Sep 25 2013
a(21)-a(23) from Giovanni Resta, Mar 13 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 11:06 EDT 2024. Contains 375730 sequences. (Running on oeis4.)