|
|
A229501
|
|
Numbers k such that Sum_{i=1..k} i' == 0 (mod k), where i' is the arithmetic derivative of i.
|
|
2
|
|
|
1, 6, 344, 1475, 3816, 5463, 18468, 78894, 515108, 566932, 1600370, 14380856, 27129564, 28669993, 31401775, 39638108, 2245196680, 2878016306, 5890364987, 7838325300, 23168759538, 63226475740, 121869542099
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
1' + 2' + 3' + 4' + 5' + 6' = 0 + 1 + 1 + 4 + 1 + 5 = 12, and 12 mod 6 = 0.
|
|
MAPLE
|
with(numtheory); P:= proc(q) local a, n, p; a:=0;
for n from 1 to q do a:=a+n*add(op(2, p)/op(1, p), p=ifactors(n)[2]);
if a mod n=0 then print(n); fi; od; end: P(10^6);
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Double-checked below 10^6 and extended up to 10^7 by M. F. Hasler, Sep 25 2013
|
|
STATUS
|
approved
|
|
|
|