login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229501
Numbers k such that Sum_{i=1..k} i' == 0 (mod k), where i' is the arithmetic derivative of i.
2
1, 6, 344, 1475, 3816, 5463, 18468, 78894, 515108, 566932, 1600370, 14380856, 27129564, 28669993, 31401775, 39638108, 2245196680, 2878016306, 5890364987, 7838325300, 23168759538, 63226475740, 121869542099
OFFSET
1,2
COMMENTS
Next term > 10^7. - M. F. Hasler, Sep 25 2013
a(21) > 10^10. - Donovan Johnson, Sep 25 2013
a(24) > 10^12. - Giovanni Resta, Mar 13 2014
FORMULA
A229501 = { n | A190121(n) = 0 (mod n) }. - M. F. Hasler, Sep 25 2013
EXAMPLE
1' + 2' + 3' + 4' + 5' + 6' = 0 + 1 + 1 + 4 + 1 + 5 = 12, and 12 mod 6 = 0.
MAPLE
with(numtheory); P:= proc(q) local a, n, p; a:=0;
for n from 1 to q do a:=a+n*add(op(2, p)/op(1, p), p=ifactors(n)[2]);
if a mod n=0 then print(n); fi; od; end: P(10^6);
PROG
(PARI) s=0; for(n=1, 1e7, (s+=A003415(n))%n||print1(n", ")) \\ - M. F. Hasler, Sep 25 2013
CROSSREFS
Sequence in context: A144849 A212490 A047941 * A289738 A211089 A221923
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Sep 25 2013
EXTENSIONS
Double-checked below 10^6 and extended up to 10^7 by M. F. Hasler, Sep 25 2013
a(12)-a(20) from Donovan Johnson, Sep 25 2013
a(21)-a(23) from Giovanni Resta, Mar 13 2014
STATUS
approved