login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290760
Matula-Goebel numbers of transitive rooted identity trees (or transitive finitary sets).
27
1, 2, 6, 30, 78, 330, 390, 870, 1410, 3198, 3390, 4290, 7878, 9570, 10230, 11310, 13026, 15510, 15990, 18330, 26070, 30966, 37290, 39390, 40890, 44070, 45210, 65130, 84810, 94830, 98310, 104610, 122070, 124410, 132990, 154830, 159330, 175890, 198330, 201630
OFFSET
1,2
COMMENTS
A rooted tree is transitive if every terminal subtree is a branch of the root. A finitary set is transitive if every element is also a subset.
EXAMPLE
Let o = {}. The sequence of transitive finitary sets begins:
1 o
2 {o}
6 {o,{o}}
30 {o,{o},{{o}}}
78 {o,{o},{o,{o}}}
330 {o,{o},{{o}},{{{o}}}}
390 {o,{o},{{o}},{o,{o}}}
870 {o,{o},{{o}},{o,{{o}}}}
1410 {o,{o},{{o}},{{o},{{o}}}}
3198 {o,{o},{o,{o}},{{o,{o}}}}
3390 {o,{o},{{o}},{o,{o},{{o}}}}
4290 {o,{o},{{o}},{{{o}}},{o,{o}}}
7878 {o,{o},{o,{o}},{o,{o,{o}}}}
9570 {o,{o},{{o}},{{{o}}},{o,{{o}}}}
10230 {o,{o},{{o}},{{{o}}},{{{{o}}}}}
11310 {o,{o},{{o}},{o,{o}},{o,{{o}}}}
13026 {o,{o},{o,{o}},{{o},{o,{o}}}}
15510 {o,{o},{{o}},{{{o}}},{{o},{{o}}}}
15990 {o,{o},{{o}},{o,{o}},{{o,{o}}}}
18330 {o,{o},{{o}},{o,{o}},{{o},{{o}}}}
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
finitaryQ[n_]:=finitaryQ[n]=Or[n===1, With[{m=primeMS[n]}, {UnsameQ@@m, finitaryQ/@m}]/.List->And];
subprimes[n_]:=If[n===1, {}, Union@@Cases[FactorInteger[n], {p_, _}:>FactorInteger[PrimePi[p]][[All, 1]]]];
transitaryQ[n_]:=Divisible[n, Times@@subprimes[n]];
nn=100000; Fold[Select, Range[nn], {finitaryQ, transitaryQ}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 19 2017
STATUS
approved