login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318189 a(n) is the least prime q such that P_n(q) = prime^n(q) + prime^(n-1)(q) + ... + prime^2(q) + prime(q) + q + (1-(-1)^n)/2 is prime, or -1 if no such prime exists. 0
2, 5, 3, 13, 5, 3, 29, 3, 13, 13, 3, 5, 31, 7, 17 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Definition: prime^0(q) = q; prime^r(q) = prime(prime^(r-1)(q)); r >= 1. P_n(q) can be thought of as a "primeth polynomial" of degree n, the sum of terms of ascending orders of primeness, such that the result is always an odd (possibly prime) number. Because of the rapid growth of the primeth function only the first few terms of this sequence have been found so far.

Note: If q exists, a(n) > 2 for n >= 1 because P_n(2) is composite.

LINKS

Table of n, a(n) for n=0..14.

N. Fernandez, An order of primeness, F(p), 1999.

EXAMPLE

For q = 2,3 P_1(q) = 6,9 respectively, but P_1(5) = 11 + 5 + 1 = 17; so a(1)=5.

For q = 2, P_2(2) = 5 + 3 + 2 = 10, but P_2(3) = 11 + 5 + 3 = 19, so a(2) = 3.

MAPLE

P:=proc(n, q)

add((ithprime@@j)(q), j=0..n)+(1-(-1)^n)/2;

end:

a:=proc(n)

local q, i;

for i from 1 do

q:=ithprime(i):

if isprime(P(n, q)) then return q; fi;

od:

end:  # W. Edwin Clark, Aug 20 2018

PROG

(Python)

from __future__ import division

from sympy import isprime, prime, nextprime

A318189_list, nmax, plist = [], 8, [[2]]

for n in range(nmax):

    r = (1-(-1)**n)//2

    for x in plist:

        if isprime(sum(x) + r):

            A318189_list.append(x[0])

            break

    else:

        p = plist[-1][0]

        while True:

            p = nextprime(p)

            x = [p]

            for i in range(n):

                x.append(prime(x[-1]))

            plist.append(x)

            if isprime(sum(x)+r):

                A318189_list.append(x[0])

                break

    if n < nmax-1:

        for x in plist:

            x.append(prime(x[-1])) # Chai Wah Wu, Aug 20 2018

CROSSREFS

Cf. A000720, A000040, A006450, A007097, A038580.

Sequence in context: A124937 A279342 A169852 * A176914 A194010 A229609

Adjacent sequences:  A318186 A318187 A318188 * A318190 A318191 A318192

KEYWORD

nonn,more

AUTHOR

David James Sycamore, Aug 19 2018

EXTENSIONS

Terms a(0) and a(10) to a(14) were found by Edwin Clark, Hans Havermann, and Chai Wah Wu (Sequence Fans Mailing List, August, 2018).

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 20:56 EDT 2019. Contains 325265 sequences. (Running on oeis4.)