

A124937


Number of solvable transitive Galois groups for polynomials of degree n.


1



1, 1, 2, 5, 3, 12, 4, 45, 30, 24, 4, 265, 6, 36, 64, 1905, 5, 892, 6, 759, 108, 32, 4, 24193, 132, 70, 2328, 1237, 6, 3816, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..31.
Bialostocki A. & Shaska T., Galois groups of prime degree polynomials with nonreal roots. arXiv:math/0601397


EXAMPLE

a(5) = 3: for polynomials of degree 5 we have 3 solvable groups: C5 (T5_1), D5 (T5_2) and F5(T5_3)


PROG

(GAP) "a(15)= ", l:=AllTransitiveGroups(NrMovedPoints, 15, IsSolvable, true);  Artur Jasinski, Feb 04 2007
(MAGMA) (*a(10)*)
for g in [1..45] do
G:=TransitiveGroup(10, g);
IsSolvable(G);
end for;


CROSSREFS

Cf. A002106, A124938.
Sequence in context: A225258 A162613 A120858 * A279342 A169852 A318189
Adjacent sequences: A124934 A124935 A124936 * A124938 A124939 A124940


KEYWORD

nonn,more


AUTHOR

Artur Jasinski, Nov 13 2006


EXTENSIONS

More terms from Artur Jasinski, Feb 04 2007


STATUS

approved



