login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!).
1

%I #16 Sep 08 2022 08:45:56

%S 1,1,1,1,2,1,1,3,3,3,1,4,6,12,2,1,5,10,30,10,10,1,6,15,60,30,60,5,1,7,

%T 21,105,70,210,35,35,1,8,28,168,140,560,140,280,14,1,9,36,252,252,

%U 1260,420,1260,126,126,1,10,45,360,420,2520,1050,4200,630,1260,42

%N Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!).

%C The triangle may be regarded a generalization of the triangle A097610:

%C A097610(n,k) = binomial(n,k)*(2*k)$/(k+1);

%C T(n,k) = binomial(n,k)*(k)$/(floor(k/2)+1).

%C Here n$ denotes the swinging factorial A056040(n). As A097610 is a decomposition of the Motzkin numbers A001006, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.

%C T(n,n) = A057977(n) which can be seen as extended Catalan numbers.

%H G. C. Greubel, <a href="/A189913/b189913.txt">Table of n, a(n) for the first 100 rows, flattened</a>

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostCatalanNumbers">The lost Catalan numbers.</a>

%F From _R. J. Mathar_, Jun 07 2011: (Start)

%F T(n,1) = n.

%F T(n,2) = A000217(n-1).

%F T(n,3) = A027480(n-2).

%F T(n,4) = A034827(n). (End)

%e [0] 1

%e [1] 1, 1

%e [2] 1, 2, 1

%e [3] 1, 3, 3, 3

%e [4] 1, 4, 6, 12, 2

%e [5] 1, 5, 10, 30, 10, 10

%e [6] 1, 6, 15, 60, 30, 60, 5

%e [7] 1, 7, 21, 105, 70, 210, 35, 35

%p A189913 := (n,k) -> binomial(n,k)*(k!/iquo(k,2)!^2)/(iquo(k,2)+1):

%p seq(print(seq(A189913(n,k),k=0..n)),n=0..7);

%t T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* _G. C. Greubel_, Jan 13 2018 *)

%o (PARI) {T(n,k) = binomial(n,k)*k!/((floor(k/2))!*(floor((k+2)/2))!) };

%o for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Jan 13 2018

%o (Magma) /* As triangle */ [[Binomial(n,k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Jan 13 2018

%Y Row sums are A189912.

%Y Cf. A097610, A057977, A001006.

%K nonn,tabl,easy

%O 0,5

%A _Peter Luschny_, May 24 2011