login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189231
Extended Catalan triangle read by rows.
8
1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 2, 8, 3, 4, 1, 10, 5, 15, 4, 5, 1, 5, 30, 9, 24, 5, 6, 1, 35, 14, 63, 14, 35, 6, 7, 1, 14, 112, 28, 112, 20, 48, 7, 8, 1, 126, 42, 252, 48, 180, 27, 63, 8, 9, 1, 42, 420, 90, 480, 75, 270, 35, 80, 9, 10, 1, 462, 132, 990, 165, 825, 110, 385, 44, 99, 10, 11, 1
OFFSET
0,5
COMMENTS
Let S(n,k) denote the coefficients of the positive powers of the Laurent polynomials C_n(x) = (x+1/x)^(n-1)*(x-1/x)*(x+1/x+n) (if n>0) and C_0(x) = 0.
Then T(n,k) = S(n+1,k+1) for n>=0, k>=0.
The classical Catalan triangle A053121(n,k) can be recovered from this triangle by setting T(n,k) = 0 if n-k is odd.
The complementary Catalan triangle A189230(n,k) can be recovered from this triangle by setting T(n,k) = 0 if n-k is even.
T(n,0) are the extended Catalan numbers A057977(n).
FORMULA
Recurrence: If k>n or k<0 then T(n,k) = 0 else if n=k then T(n,k) = 1; otherwise T(n,k) = T(n-1,k-1) + ((n-k) mod 2)*T(n-1,k) + T(n-1,k+1).
S(n,k) = (k/n)* A162246(n,k) for n>0 where S(n,k) are the coefficients from the definition provided the triangle A162246 is indexed in Laurent style by the recurrence: if abs(k) > n then A162246(n,k) = 0 else if n = k then A162246(n,k) = 1 and otherwise A162246(n,k) = A162246(n-1,k-1)+ modp(n-k,2) * A162246(n-1,k) + A162246(n-1,k+1).
Row sums: A189911(n) = A162246(n,n) + A162246(n,n+1) for n>0.
EXAMPLE
The Laurent polynomials:
C(0,x) = 0
C(1,x) = x - 1/x
C(2,x) = x^2 + x - 1/x - 1/x^2
C(3,x) = x^3 + 2 x^2 + x - 1/x - 2/x^2 -1/x^3
Triangle T(n,k) = S(n+1,k+1) starts
[0] 1,
[1] 1, 1,
[2] 1, 2, 1,
[3] 3, 2, 3, 1,
[4] 2, 8, 3, 4, 1,
[5] 10, 5, 15, 4, 5, 1,
[6] 5, 30, 9, 24, 5, 6, 1,
[7] 35, 14, 63, 14, 35, 6, 7, 1,
[0],[1],[2],[3],[4],[5],[6],[7]
MAPLE
A189231_poly := (n, x)-> `if`(n=0, 0, (x+1/x)^(n-2)*(x-1/x)*(x+1/x+n-1)):
seq(print([n], seq(coeff(expand(A189231_poly(n, x)), x, k), k=1..n)), n=1..9);
A189231 := proc(n, k) option remember; `if`(k>n or k<0, 0, `if`(n=k, 1, A189231(n-1, k-1)+modp(n-k, 2)*A189231(n-1, k)+A189231(n-1, k+1))) end:
seq(print(seq(A189231(n, k), k=0..n)), n=0..9);
MATHEMATICA
t[n_, k_] /; (k > n || k < 0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + Mod[n-k, 2]*t[n-1, k] + t[n-1, k+1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 01 2011
STATUS
approved