login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of psi(-q^3) / f(q) where psi(), f() are Ramanujan theta functions.
9

%I #13 Mar 12 2021 22:24:45

%S 1,-1,2,-4,6,-9,14,-20,29,-42,58,-80,110,-148,198,-264,347,-454,592,

%T -764,982,-1257,1598,-2024,2554,-3206,4010,-5000,6208,-7684,9484,

%U -11664,14306,-17501,21346,-25972,31526,-38170,46112,-55588,66861,-80258,96154,-114968,137212

%N Expansion of psi(-q^3) / f(q) where psi(), f() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

%H G. C. Greubel, <a href="/A139135/b139135.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-1/3) * eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q^2)^3 * eta(q^6)) in powers of q.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (108 t)) = 3^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A139136.

%F a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(3/4) * n^(3/4)). - _Vaclav Kotesovec_, Nov 16 2017

%e q - q^4 + 2*q^7 - 4*q^10 + 6*q^13 - 9*q^16 + 14*q^19 - 20*q^22 + 29*q^25 + ...

%t A139135[n_] := SeriesCoefficient[(QPochhammer[q]* QPochhammer[q^3]*QPochhammer[q^4]*QPochhammer[q^12])/(QPochhammer[q^2]^3 *QPochhammer[q^6]), {q, 0, n}]; Table[A139135[n], {n, 0, 50}] (* _G. C. Greubel_, Oct 05 2017 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x^2 + A)^3 * eta(x^6 + A)), n))}

%Y A139136(3*n + 1) = - a(n). A139137(3*n + 1) = 2 * a(n).

%Y Apart from signs, same as A097197.

%K sign

%O 0,3

%A _Michael Somos_, Apr 10 2008