login
A123956
Triangle of coefficients of polynomials P(k) = 2*X*P(k - 1) - P(k - 2), P(0) = -1, P(1) = 1 + X, with twisted signs.
3
-1, 1, 1, -1, -2, -2, 1, -3, 4, 4, -1, 4, 8, -8, -8, 1, 5, -12, -20, 16, 16, -1, -6, -18, 32, 48, -32, -32, 1, -7, 24, 56, -80, -112, 64, 64, -1, 8, 32, -80, -160, 192, 256, -128, -128, 1, 9, -40, -120, 240, 432, -448, -576, 256, 256, -1, -10, -50, 160, 400, -672, -1120, 1024, 1280, -512, -512
OFFSET
0,5
COMMENTS
Up to signs also the coefficients of polynomials y(n+1) = y(n-1) - 2*h*y(n), arising when the ODE y' = -y is numerically solved with the leapfrog (a.k.a. two-step Nyström) method, with y(0) = 1, y(1) = 1 - h. In this case, the coefficients are negative exactly for the odd powers of h. - M. F. Hasler, Nov 30 2022
REFERENCES
CRC Standard Mathematical Tables and Formulae, 16th ed. 1996, p. 484.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Lutterbach, Approximating ODE y′=f(t,y) by using leapfrog method, Mathematics Stack Exchange, Nov 21 2019
FORMULA
From M. F. Hasler, Nov 30 2022: (Start)
a(n,0) = (-1)^(n+1), a(n,1) = (-1)^floor(n/2)*n,
a(n,2) = (-1)^floor((n+1)/2)*A007590(n) = (-1)^floor((n+1)/2)*floor(n^2 / 2),
a(n,n) = a(n,n-1) = (-2)^(n-1) (n > 0),
a(n,3) / a(n,2) = { n/3 if n odd, -4*(n+2)/n if n even },
a(n,4) / a(n,3) = n/4 if n is even. (End)
EXAMPLE
Triangle begins:
{-1},
{ 1, 1},
{-1, -2, -2},
{ 1, -3, 4, 4},
{-1, 4, 8, -8, -8},
{ 1, 5, -12, -20, 16, 16},
{-1, -6, -18, 32, 48, -32, -32},
{ 1, -7, 24, 56, -80, -112, 64, 64},
{-1, 8, 32, -80, -160, 192, 256, -128, -128},
{ 1, 9, -40, -120, 240, 432, -448, -576, 256, 256},
{-1, -10, -50, 160, 400, -672, -1120, 1024, 1280, -512, -512},
...
MATHEMATICA
p[ -1, x] = 0; p[0, x] = 1; p[1, x] = x + 1;
p[k_, x_] := p[k, x] = 2*x*p[k - 1, x] - p[k - 2, x];
w = Table[CoefficientList[p[n, x], x], {n, 0, 10}];
An[d_] := Table[If[n == d && m <n, -w[[n]][[d - m + 1]], If[m == n + 1, 1, 0]], {n, 1, d}, {m, 1, d}];
b = Table[CoefficientList[ExpandAll[y^(d - 1)*(CharacteristicPolynomial[An[d], x] /. x -> 1/y)] /. 1/y -> 1, y], {d, 1, 11}] // Flatten
PROG
(PARI) P=List([-1, 1-'x]); {A123956(n, k)=for(i=#P, n+1, listput(P, P[i-1]-2*'x*P[i])); polcoef(P[n+1], k)*(-1)^((n-k-1)\2+!k*n\2)} \\ M. F. Hasler, Nov 30 2022
CROSSREFS
Cf. A123235.
Sequence in context: A303273 A193820 A216368 * A368606 A331953 A113594
KEYWORD
uned,tabl,sign
AUTHOR
EXTENSIONS
Offset changed to 0 by M. F. Hasler, Nov 30 2022
STATUS
approved