login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123957
Expansion of g.f.: x^4/((1+2*x) * (1-2*x+x^2+2*x^3)).
1
0, 0, 0, 1, 0, 3, -4, 5, -24, 19, -76, 133, -208, 627, -852, 2181, -4232, 7443, -18012, 30533, -66880, 133875, -250724, 547013, -1020152, 2108435, -4245612, 8217861, -17089968, 33202291, -67158900, 135095301, -265925992, 541112339, -1069523580, 2146659781, -4309316128, 8553624307
OFFSET
1,6
FORMULA
a(n)= 3*a(n-2) -4*a(n-3) -4*a(n-4).
a(n)= ((-2)^n -9*A077942(n) +20*A077942(n-1) -17*A077942(n-2))/32, n>3.
MAPLE
seq(coeff(series(x^4/((1+2*x)*(1-2*x+x^2+2*x^3)), x, n+1), x, n), n = 1..40); # G. C. Greubel, Aug 05 2019
MATHEMATICA
M = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {-4, -4, 3, 0}}; v[1] = {0, 0, 0, 1}; v[n_]:= v[n] = M.v[n-1]; Table[v[n][[1]], {n, 40}]
Rest@CoefficientList[Series[x^4/((1+2*x)*(1-2*x+x^2+2*x^3)), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 3, -4, -4}, {0, 0, 0, 1}, 40] (* Harvey P. Dale, Dec 27 2015 *)
PROG
(PARI) my(x='x+O('x^40)); concat([0, 0, 0], Vec(x^4/((1+2*x)*(1-2*x+x^2+ 2*x^3)))) \\ G. C. Greubel, Aug 05 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0, 0, 0] cat Coefficients(R!( x^4/((1+2*x)*(1-2*x+x^2+2*x^3)) )); // G. C. Greubel, Aug 05 2019
(Sage) a=(x^4/((1+2*x) * (1-2*x+x^2+2*x^3))).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Aug 05 2019
(GAP) a:=[0, 0, 0, 1];; for n in [5..40] do a[n]:=3*a[n-2]-4*a[n-3] -4*a[n-4]; od; a; # G. C. Greubel, Aug 05 2019
CROSSREFS
Sequence in context: A208807 A126896 A334225 * A370625 A085285 A282250
KEYWORD
sign
AUTHOR
EXTENSIONS
Definition replaced with generating function. - the Assoc. Eds of the OEIS, Mar 28 2010
STATUS
approved