|
|
A360078
|
|
Moebius function for the floor quotient poset.
|
|
2
|
|
|
1, -1, -1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, -1, -1, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, 0, 0, -1, -1, -1, -2, -2, -2, -2, -3, -3, -3, -3, -3, -1, -1, -1, -1, -1, -1, 1, 1, 1, 0, -1, -1, -1, -1, -1, -1, -1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,30
|
|
COMMENTS
|
Say d is a "floor quotient" of n if d = [n/k] for some positive integer k. This defines a partial order relation on the positive integers. This sequence records the Moebius function values of this poset.
|
|
LINKS
|
|
|
EXAMPLE
|
For n = 9, the set of floor quotients of 9 are Q(9) = {1, 2, 3, 4, 9} with Moebius values a(1) = 1, a(2) = -1, a(3) = -1, and a(4) = 0. The Moebius recursion requires that the Moebius values summed over Q(9) must equal zero, so a(9) = 1.
|
|
MATHEMATICA
|
LinearSolve[Table[If[Floor[i/j] > Floor[i/(j + 1)], 1, 0], {i, n}, {j, n}], UnitVector[n, 1]]
|
|
PROG
|
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, my(S=Set(vector(n-1, k, n\(k+1)))); v[n]=-sum(i=1, #S, v[S[i]])); v} \\ Andrew Howroyd, Jan 24 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|