login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262742 Irregular table read by rows: T(n,k) is the number of binary symmetric n X n matrices with exactly k 1's; n>=0, 0<=k<=n^2. Where the symmetry axes are in horizontal and vertical. 2
1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 1, 1, 1, 4, 4, 10, 10, 20, 20, 31, 31, 40, 40, 44, 44, 40, 40, 31, 31, 20, 20, 10, 10, 4, 4, 1, 1, 1, 0, 0, 0, 9, 0, 0, 0, 36, 0, 0, 0, 84, 0, 0, 0, 126, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,11
COMMENTS
The row length of this irregular triangle is n^2+1 = A002522(n).
Inspired by A262666, but rotating the diagonal and antidiagonal symmetry axis to horizontal and vertical axes.
From Wolfdieter Lang, Oct 12 2015 (Start):
Double symmetry of n X n matrix M: M(i, j) = M(n-i+1, j) = M(i, n-j+1) (= M(n-i+1, n-j+1)), here with entries from {0, 1}.
Due to 0 <-> 1 flip the rows are symmetric.
The number of independent entries in such an n X n doubly symmetric matrix is A008794(n+1) (squares repeated). Therefore, the row sums give repeated A002416 (omitting the first 1): 1, 2, 2, 16, 16, 512, 512, ... (End) - Wolfdieter Lang, Oct 12 2015
LINKS
EXAMPLE
Irregular table begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 1 1
2: 1 0 0 0 1
3: 1 1 2 2 2 2 2 2 1 1
...
Row 4: 1, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 1;
Row 5: 1, 1, 4, 4, 10, 10, 20, 20, 31, 31, 40, 40, 44, 44, 40, 40, 31, 31, 20, 20, 10, 10, 4, 4, 1, 1.
...
CROSSREFS
Sequence in context: A340172 A163529 A283655 * A360078 A027354 A192227
KEYWORD
nonn,tabf
AUTHOR
Kival Ngaokrajang, Sep 29 2015
EXTENSIONS
More terms from Alois P. Heinz, Sep 29 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 23:15 EDT 2024. Contains 375749 sequences. (Running on oeis4.)