login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Finite differences of Moebius function for the floor quotient poset.
2

%I #16 Jan 01 2024 19:49:38

%S 1,-2,0,1,0,1,0,-1,1,0,0,-1,0,0,0,1,0,-2,0,0,0,0,0,1,0,0,-1,0,0,-1,0,

%T 0,0,0,0,1,0,0,0,1,0,-1,0,0,-1,0,0,0,-1,0,0,0,0,2,0,0,0,0,0,2,0,0,-1,

%U -1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2

%N Finite differences of Moebius function for the floor quotient poset.

%C a(n) = mu(n) - mu(n-1), where mu(n) = A360078(n) is the Moebius function of the floor quotient poset.

%H Andrew Howroyd, <a href="/A360079/b360079.txt">Table of n, a(n) for n = 1..10000</a>

%H J.-P. Cardinal, <a href="https://arxiv.org/abs/0811.3701">Symmetric matrices related to the Mertens function</a>, arXiv:0811.3701 [math.NT], 2008.

%H J. C. Lagarias and D. H. Richman, <a href="https://arxiv.org/abs/2212.11689">The floor quotient partial order</a>, arXiv:2212.11689 [math.NT], 2022.

%t LinearSolve[Table[If[Floor[i/j] > Floor[i/(j + 1)], 1, 0], {i, n}, {j, n}] . Table[If[i >= j, 1, 0], {i, n}, {j, n}], UnitVector[n, 1]]

%o (PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, my(S=Set(vector(n-1, k, n\(k+1)))); v[n]=-sum(i=1, #S, v[S[i]])); vector(#v, i, v[i]-if(i>1, v[i-1]))} \\ _Andrew Howroyd_, Jan 24 2023

%Y Cf. A002321, A008683, A360078.

%K sign

%O 1,2

%A _Harry Richman_, Jan 24 2023