OFFSET
1,2
COMMENTS
LINKS
Clark Kimberling, antidiagonals n = 1..60, flattened
FORMULA
T(n,k) = 5*T(n,k-1) - 9*T(n,k-2) + 7*T(n,k-3) - 2*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(-1 + 2^n - (-2 + 2^n)*x) and g(x) = (1 - 2*x)(1 - x)^3.
T(n,k) = 2^(n+k+1) - 2^n*(k+2) - binomial(k+1, 2). - G. C. Greubel, Jul 25 2019
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1, 5, 16, 42, 99, 219, ...
3, 13, 38, 94, 213, 459, ...
7, 29, 82, 198, 441, 939, ...
15, 61, 170, 406, 897, 1899, ...
31, 125, 346, 822, 1809, 3819, ...
...
MATHEMATICA
(* First program *)
b[n_]:= n; c[n_]:= -1 + 2^n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213571 *)
d = Table[t[n, n], {n, 1, 40}] (* A213572 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213581 *)
(* Additional programs *)
Table[2^(n+2) -2^k*(n-k+3) -Binomial[n-k+2, 2], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 25 2019 *)
PROG
(PARI) for(n=1, 12, for(k=1, n, print1(2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2), ", "))) \\ G. C. Greubel, Jul 25 2019
(Magma) [2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 25 2019
(Sage) [[2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 25 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> 2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2) ))); # G. C. Greubel, Jul 25 2019
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Jun 19 2012
STATUS
approved