The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213571 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution. 5
 1, 5, 3, 16, 13, 7, 42, 38, 29, 15, 99, 94, 82, 61, 31, 219, 213, 198, 170, 125, 63, 466, 459, 441, 406, 346, 253, 127, 968, 960, 939, 897, 822, 698, 509, 255, 1981, 1972, 1948, 1899, 1809, 1654, 1402, 1021, 511, 4017, 4007, 3980, 3924, 3819, 3633 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Principal diagonal: A213572. Antidiagonal sums: A213581. Row 1, (1,2,3,4,5,...)**(1,3,7,15,31,...): A002662. Row 2, (1,2,3,4,5,...)**(3,7,15,31,63,...). Row 3, (1,2,3,4,5,...)**(7,15,31,63,...). For a guide to related arrays, see A213500. LINKS Clark Kimberling, antidiagonals n = 1..60, flattened FORMULA T(n,k) = 5*T(n,k-1) - 9*T(n,k-2) + 7*T(n,k-3) - 2*T(n,k-4). G.f. for row n: f(x)/g(x), where f(x) = x*(-1 + 2^n - (-2 + 2^n)*x) and g(x) = (1 - 2*x)(1 - x)^3. T(n,k) = 2^(n+k+1) - 2^n*(k+2) - binomial(k+1, 2). - G. C. Greubel, Jul 25 2019 EXAMPLE Northwest corner (the array is read by falling antidiagonals): 1, 5, 16, 42, 99, 219, ... 3, 13, 38, 94, 213, 459, ... 7, 29, 82, 198, 441, 939, ... 15, 61, 170, 406, 897, 1899, ... 31, 125, 346, 822, 1809, 3819, ... ... MATHEMATICA (* First program *) b[n_]:= n; c[n_]:= -1 + 2^n; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213571 *) d = Table[t[n, n], {n, 1, 40}] (* A213572 *) s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A213581 *) (* Additional programs *) Table[2^(n+2) -2^k*(n-k+3) -Binomial[n-k+2, 2], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 25 2019 *) PROG (PARI) for(n=1, 12, for(k=1, n, print1(2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2), ", "))) \\ G. C. Greubel, Jul 25 2019 (Magma) [2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 25 2019 (Sage) [[2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 25 2019 (GAP) Flat(List([1..12], n-> List([1..n], k-> 2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2) ))); # G. C. Greubel, Jul 25 2019 CROSSREFS Cf. A213500, A213587. Sequence in context: A053371 A199005 A217415 * A185880 A292243 A105201 Adjacent sequences: A213568 A213569 A213570 * A213572 A213573 A213574 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Jun 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 08:57 EDT 2024. Contains 372710 sequences. (Running on oeis4.)