login
A213570
Antidiagonal sums of the convolution array A213566.
4
1, 9, 37, 110, 272, 598, 1213, 2323, 4265, 7588, 13184, 22500, 37881, 63125, 104381, 171602, 280896, 458330, 746085, 1212415, 1967761, 3190824, 5170752, 8375400, 13561777, 21954753, 35536213, 57512918, 93073520, 150613438
OFFSET
1,2
FORMULA
a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3) + a(n-4) - 3*a(n-5) + a(n-6).
G.f.: f(x)/g(x), where f(x) = x*(1 + 4*x + x^2) and g(x) = (1 - x - x^2)*(1 - x)^4.
a(n) = Fibonacci(n+9) + Lucas(n+8) - n*(n^2 + 9*n + 39) - 81. - Ehren Metcalfe, Jul 10 2019
a(n) = Sum_{k=1..n} k^3 * Fibonacci(n+1-k). - Greg Dresden, Feb 27 2022
MATHEMATICA
(* First program *)
b[n_]:= Fibonacci[n]; c[n_]:= n^2;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213566 *)
d = Table[t[n, n], {n, 1, 40}] (* A213567 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213570 *)
(* Second program *)
Table[Fibonacci[n+9] + LucasL[n+8] -(n^3+9*n^2+39*n+81), {n, 35}] (* G. C. Greubel, Jul 26 2019 *)
PROG
(PARI) vector(35, n, f=fibonacci; 2*f(n+9)+f(n+7) -(n^3+9*n^2+39*n+81)) \\ G. C. Greubel, Jul 26 2019
(Magma) [Fibonacci(n+9) +Lucas(n+8) -(n^3+9*n^2+39*n+81): n in [1..35]]; // G. C. Greubel, Jul 26 2019
(Sage) [fibonacci(n+9) +lucas_number2(n+8, 1, -1) -(n^3+9*n^2+39*n+81) for n in (1..35)] # G. C. Greubel, Jul 26 2019
(GAP) List([1..35], n-> Fibonacci(n+9)+Lucas(1, -1, n+8)[2] -(n^3+9*n^2 +39*n+81)); # G. C. Greubel, Jul 26 2019
CROSSREFS
Sequence in context: A244245 A288116 A165394 * A271908 A257448 A288415
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 19 2012
STATUS
approved