The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213566 Rectangular array:  (row n) = b**c, where b(h) = F(h), c(h) = (n-1+h)^2, F = A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution. 4
 1, 5, 4, 15, 13, 9, 36, 33, 25, 16, 76, 71, 59, 41, 25, 148, 140, 120, 93, 61, 36, 273, 260, 228, 183, 135, 85, 49, 485, 464, 412, 340, 260, 185, 113, 64, 839, 805, 721, 604, 476, 351, 243, 145, 81, 1424, 1369, 1233, 1044, 836, 636, 456, 309, 181, 100 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Principal diagonal:  A213567. Antidiagonal sums:  A213570. Row 1,  (1,1,2,3,5,...)**(1,4,9,16,25,...): A053808. Row 2,  (1,1,2,3,5,...)**(4,9,16,25,...). Row 3,  (1,1,2,3,5,...)**(16,25,49,...). For a guide to related arrays, see A213500. LINKS Clark Kimberling, Antidiagonals n = 1..60, flattened FORMULA T(n,k) = 4*T(n,k-1)-5*T(n,k-2)+T(n,k-3)+2*T(n,k-4)-T(n,k-5). G.f. for row n:  f(x)/g(x), where f(x) = x*(n^2 - (2*n^2 - 2*n - 1)*x + (n - 1)^2 *x^2) and g(x) = (1 - x - x^2)*(1 - x )^3. T(n,k) = n*(n*F(k+2) + 2*F(k+3)) + F(k+6) - (n+2)*(2*k+n+2) - k^2 - 4, F = A000045. - Ehren Metcalfe, Jul 10 2019 EXAMPLE Northwest corner (the array is read by falling antidiagonals): 1....5....15....36....76 4....13...33....71....140 9....25...59....120...228 16...41...93....183...340 25...61...135...260...476 MATHEMATICA (* First program *) b[n_]:= Fibonacci[n]; c[n_]:= n^2; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[t[n, k], {k, 1, 60}]  (* A213566 *) d = Table[t[n, n], {n, 1, 40}] (* A213567 *) s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A213570 *) (* Second program *) With[{F = Fibonacci}, Table[k*(k*F[n-k+3] +2*F[n-k+4]) + F[n-k+7] -(k+2) *(2*n-k+4) -(n-k+1)^2 -4, {n, 12}, {k, n}]//Flatten] (* G. C. Greubel, Jul 26 2019 *) PROG (PARI) f=fibonacci; for(n=1, 12, for(k=1, n, print1(k*(k*f(n-k+3) +2*f(n-k+4)) + f(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4, ", "))) \\ G. C. Greubel, Jul 26 2019 (MAGMA) F:=Fibonacci; [k*(k*F(n-k+3) +2*F(n-k+4)) + F(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4: k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 26 2019 (Sage) f=fibonacci; [[k*(k*f(n-k+3) +2*f(n-k+4)) + f(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 26 2019 (GAP) F:=Fibonacci;; Flat(List([1..12], n-> List([1..n], k-> k*(k*F(n-k+3) +2*F(n-k+4)) + F(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4 ))); # G. C. Greubel, Jul 26 2019 CROSSREFS Cf. A213500, A213587. Sequence in context: A154225 A188627 A203976 * A143129 A185731 A177765 Adjacent sequences:  A213563 A213564 A213565 * A213567 A213568 A213569 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Jun 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 17:11 EDT 2021. Contains 343920 sequences. (Running on oeis4.)